mirror of
https://gitlab.com/MoonTestUse1/AdministrationItDepartmens.git
synced 2025-08-14 00:25:46 +02:00
Initial commit
This commit is contained in:
605
venv/Lib/site-packages/jose/backends/cryptography_backend.py
Normal file
605
venv/Lib/site-packages/jose/backends/cryptography_backend.py
Normal file
@@ -0,0 +1,605 @@
|
||||
import math
|
||||
import warnings
|
||||
|
||||
from cryptography.exceptions import InvalidSignature, InvalidTag
|
||||
from cryptography.hazmat.backends import default_backend
|
||||
from cryptography.hazmat.bindings.openssl.binding import Binding
|
||||
from cryptography.hazmat.primitives import hashes, hmac, serialization
|
||||
from cryptography.hazmat.primitives.asymmetric import ec, padding, rsa
|
||||
from cryptography.hazmat.primitives.asymmetric.utils import decode_dss_signature, encode_dss_signature
|
||||
from cryptography.hazmat.primitives.ciphers import Cipher, aead, algorithms, modes
|
||||
from cryptography.hazmat.primitives.keywrap import InvalidUnwrap, aes_key_unwrap, aes_key_wrap
|
||||
from cryptography.hazmat.primitives.padding import PKCS7
|
||||
from cryptography.hazmat.primitives.serialization import load_pem_private_key, load_pem_public_key
|
||||
from cryptography.utils import int_to_bytes
|
||||
from cryptography.x509 import load_pem_x509_certificate
|
||||
|
||||
from ..constants import ALGORITHMS
|
||||
from ..exceptions import JWEError, JWKError
|
||||
from ..utils import base64_to_long, base64url_decode, base64url_encode, ensure_binary, long_to_base64
|
||||
from .base import Key
|
||||
|
||||
_binding = None
|
||||
|
||||
|
||||
def get_random_bytes(num_bytes):
|
||||
"""
|
||||
Get random bytes
|
||||
|
||||
Currently, Cryptography returns OS random bytes. If you want OpenSSL
|
||||
generated random bytes, you'll have to switch the RAND engine after
|
||||
initializing the OpenSSL backend
|
||||
Args:
|
||||
num_bytes (int): Number of random bytes to generate and return
|
||||
Returns:
|
||||
bytes: Random bytes
|
||||
"""
|
||||
global _binding
|
||||
|
||||
if _binding is None:
|
||||
_binding = Binding()
|
||||
|
||||
buf = _binding.ffi.new("char[]", num_bytes)
|
||||
_binding.lib.RAND_bytes(buf, num_bytes)
|
||||
rand_bytes = _binding.ffi.buffer(buf, num_bytes)[:]
|
||||
return rand_bytes
|
||||
|
||||
|
||||
class CryptographyECKey(Key):
|
||||
SHA256 = hashes.SHA256
|
||||
SHA384 = hashes.SHA384
|
||||
SHA512 = hashes.SHA512
|
||||
|
||||
def __init__(self, key, algorithm, cryptography_backend=default_backend):
|
||||
if algorithm not in ALGORITHMS.EC:
|
||||
raise JWKError("hash_alg: %s is not a valid hash algorithm" % algorithm)
|
||||
|
||||
self.hash_alg = {
|
||||
ALGORITHMS.ES256: self.SHA256,
|
||||
ALGORITHMS.ES384: self.SHA384,
|
||||
ALGORITHMS.ES512: self.SHA512,
|
||||
}.get(algorithm)
|
||||
self._algorithm = algorithm
|
||||
|
||||
self.cryptography_backend = cryptography_backend
|
||||
|
||||
if hasattr(key, "public_bytes") or hasattr(key, "private_bytes"):
|
||||
self.prepared_key = key
|
||||
return
|
||||
|
||||
if hasattr(key, "to_pem"):
|
||||
# convert to PEM and let cryptography below load it as PEM
|
||||
key = key.to_pem().decode("utf-8")
|
||||
|
||||
if isinstance(key, dict):
|
||||
self.prepared_key = self._process_jwk(key)
|
||||
return
|
||||
|
||||
if isinstance(key, str):
|
||||
key = key.encode("utf-8")
|
||||
|
||||
if isinstance(key, bytes):
|
||||
# Attempt to load key. We don't know if it's
|
||||
# a Public Key or a Private Key, so we try
|
||||
# the Public Key first.
|
||||
try:
|
||||
try:
|
||||
key = load_pem_public_key(key, self.cryptography_backend())
|
||||
except ValueError:
|
||||
key = load_pem_private_key(key, password=None, backend=self.cryptography_backend())
|
||||
except Exception as e:
|
||||
raise JWKError(e)
|
||||
|
||||
self.prepared_key = key
|
||||
return
|
||||
|
||||
raise JWKError("Unable to parse an ECKey from key: %s" % key)
|
||||
|
||||
def _process_jwk(self, jwk_dict):
|
||||
if not jwk_dict.get("kty") == "EC":
|
||||
raise JWKError("Incorrect key type. Expected: 'EC', Received: %s" % jwk_dict.get("kty"))
|
||||
|
||||
if not all(k in jwk_dict for k in ["x", "y", "crv"]):
|
||||
raise JWKError("Mandatory parameters are missing")
|
||||
|
||||
x = base64_to_long(jwk_dict.get("x"))
|
||||
y = base64_to_long(jwk_dict.get("y"))
|
||||
curve = {
|
||||
"P-256": ec.SECP256R1,
|
||||
"P-384": ec.SECP384R1,
|
||||
"P-521": ec.SECP521R1,
|
||||
}[jwk_dict["crv"]]
|
||||
|
||||
public = ec.EllipticCurvePublicNumbers(x, y, curve())
|
||||
|
||||
if "d" in jwk_dict:
|
||||
d = base64_to_long(jwk_dict.get("d"))
|
||||
private = ec.EllipticCurvePrivateNumbers(d, public)
|
||||
|
||||
return private.private_key(self.cryptography_backend())
|
||||
else:
|
||||
return public.public_key(self.cryptography_backend())
|
||||
|
||||
def _sig_component_length(self):
|
||||
"""Determine the correct serialization length for an encoded signature component.
|
||||
|
||||
This is the number of bytes required to encode the maximum key value.
|
||||
"""
|
||||
return int(math.ceil(self.prepared_key.key_size / 8.0))
|
||||
|
||||
def _der_to_raw(self, der_signature):
|
||||
"""Convert signature from DER encoding to RAW encoding."""
|
||||
r, s = decode_dss_signature(der_signature)
|
||||
component_length = self._sig_component_length()
|
||||
return int_to_bytes(r, component_length) + int_to_bytes(s, component_length)
|
||||
|
||||
def _raw_to_der(self, raw_signature):
|
||||
"""Convert signature from RAW encoding to DER encoding."""
|
||||
component_length = self._sig_component_length()
|
||||
if len(raw_signature) != int(2 * component_length):
|
||||
raise ValueError("Invalid signature")
|
||||
|
||||
r_bytes = raw_signature[:component_length]
|
||||
s_bytes = raw_signature[component_length:]
|
||||
r = int.from_bytes(r_bytes, "big")
|
||||
s = int.from_bytes(s_bytes, "big")
|
||||
return encode_dss_signature(r, s)
|
||||
|
||||
def sign(self, msg):
|
||||
if self.hash_alg.digest_size * 8 > self.prepared_key.curve.key_size:
|
||||
raise TypeError(
|
||||
"this curve (%s) is too short "
|
||||
"for your digest (%d)" % (self.prepared_key.curve.name, 8 * self.hash_alg.digest_size)
|
||||
)
|
||||
signature = self.prepared_key.sign(msg, ec.ECDSA(self.hash_alg()))
|
||||
return self._der_to_raw(signature)
|
||||
|
||||
def verify(self, msg, sig):
|
||||
try:
|
||||
signature = self._raw_to_der(sig)
|
||||
self.prepared_key.verify(signature, msg, ec.ECDSA(self.hash_alg()))
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
def is_public(self):
|
||||
return hasattr(self.prepared_key, "public_bytes")
|
||||
|
||||
def public_key(self):
|
||||
if self.is_public():
|
||||
return self
|
||||
return self.__class__(self.prepared_key.public_key(), self._algorithm)
|
||||
|
||||
def to_pem(self):
|
||||
if self.is_public():
|
||||
pem = self.prepared_key.public_bytes(
|
||||
encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo
|
||||
)
|
||||
return pem
|
||||
pem = self.prepared_key.private_bytes(
|
||||
encoding=serialization.Encoding.PEM,
|
||||
format=serialization.PrivateFormat.TraditionalOpenSSL,
|
||||
encryption_algorithm=serialization.NoEncryption(),
|
||||
)
|
||||
return pem
|
||||
|
||||
def to_dict(self):
|
||||
if not self.is_public():
|
||||
public_key = self.prepared_key.public_key()
|
||||
else:
|
||||
public_key = self.prepared_key
|
||||
|
||||
crv = {
|
||||
"secp256r1": "P-256",
|
||||
"secp384r1": "P-384",
|
||||
"secp521r1": "P-521",
|
||||
}[self.prepared_key.curve.name]
|
||||
|
||||
# Calculate the key size in bytes. Section 6.2.1.2 and 6.2.1.3 of
|
||||
# RFC7518 prescribes that the 'x', 'y' and 'd' parameters of the curve
|
||||
# points must be encoded as octed-strings of this length.
|
||||
key_size = (self.prepared_key.curve.key_size + 7) // 8
|
||||
|
||||
data = {
|
||||
"alg": self._algorithm,
|
||||
"kty": "EC",
|
||||
"crv": crv,
|
||||
"x": long_to_base64(public_key.public_numbers().x, size=key_size).decode("ASCII"),
|
||||
"y": long_to_base64(public_key.public_numbers().y, size=key_size).decode("ASCII"),
|
||||
}
|
||||
|
||||
if not self.is_public():
|
||||
private_value = self.prepared_key.private_numbers().private_value
|
||||
data["d"] = long_to_base64(private_value, size=key_size).decode("ASCII")
|
||||
|
||||
return data
|
||||
|
||||
|
||||
class CryptographyRSAKey(Key):
|
||||
SHA256 = hashes.SHA256
|
||||
SHA384 = hashes.SHA384
|
||||
SHA512 = hashes.SHA512
|
||||
|
||||
RSA1_5 = padding.PKCS1v15()
|
||||
RSA_OAEP = padding.OAEP(padding.MGF1(hashes.SHA1()), hashes.SHA1(), None)
|
||||
RSA_OAEP_256 = padding.OAEP(padding.MGF1(hashes.SHA256()), hashes.SHA256(), None)
|
||||
|
||||
def __init__(self, key, algorithm, cryptography_backend=default_backend):
|
||||
if algorithm not in ALGORITHMS.RSA:
|
||||
raise JWKError("hash_alg: %s is not a valid hash algorithm" % algorithm)
|
||||
|
||||
self.hash_alg = {
|
||||
ALGORITHMS.RS256: self.SHA256,
|
||||
ALGORITHMS.RS384: self.SHA384,
|
||||
ALGORITHMS.RS512: self.SHA512,
|
||||
}.get(algorithm)
|
||||
self._algorithm = algorithm
|
||||
|
||||
self.padding = {
|
||||
ALGORITHMS.RSA1_5: self.RSA1_5,
|
||||
ALGORITHMS.RSA_OAEP: self.RSA_OAEP,
|
||||
ALGORITHMS.RSA_OAEP_256: self.RSA_OAEP_256,
|
||||
}.get(algorithm)
|
||||
|
||||
self.cryptography_backend = cryptography_backend
|
||||
|
||||
# if it conforms to RSAPublicKey interface
|
||||
if hasattr(key, "public_bytes") and hasattr(key, "public_numbers"):
|
||||
self.prepared_key = key
|
||||
return
|
||||
|
||||
if isinstance(key, dict):
|
||||
self.prepared_key = self._process_jwk(key)
|
||||
return
|
||||
|
||||
if isinstance(key, str):
|
||||
key = key.encode("utf-8")
|
||||
|
||||
if isinstance(key, bytes):
|
||||
try:
|
||||
if key.startswith(b"-----BEGIN CERTIFICATE-----"):
|
||||
self._process_cert(key)
|
||||
return
|
||||
|
||||
try:
|
||||
self.prepared_key = load_pem_public_key(key, self.cryptography_backend())
|
||||
except ValueError:
|
||||
self.prepared_key = load_pem_private_key(key, password=None, backend=self.cryptography_backend())
|
||||
except Exception as e:
|
||||
raise JWKError(e)
|
||||
return
|
||||
|
||||
raise JWKError("Unable to parse an RSA_JWK from key: %s" % key)
|
||||
|
||||
def _process_jwk(self, jwk_dict):
|
||||
if not jwk_dict.get("kty") == "RSA":
|
||||
raise JWKError("Incorrect key type. Expected: 'RSA', Received: %s" % jwk_dict.get("kty"))
|
||||
|
||||
e = base64_to_long(jwk_dict.get("e", 256))
|
||||
n = base64_to_long(jwk_dict.get("n"))
|
||||
public = rsa.RSAPublicNumbers(e, n)
|
||||
|
||||
if "d" not in jwk_dict:
|
||||
return public.public_key(self.cryptography_backend())
|
||||
else:
|
||||
# This is a private key.
|
||||
d = base64_to_long(jwk_dict.get("d"))
|
||||
|
||||
extra_params = ["p", "q", "dp", "dq", "qi"]
|
||||
|
||||
if any(k in jwk_dict for k in extra_params):
|
||||
# Precomputed private key parameters are available.
|
||||
if not all(k in jwk_dict for k in extra_params):
|
||||
# These values must be present when 'p' is according to
|
||||
# Section 6.3.2 of RFC7518, so if they are not we raise
|
||||
# an error.
|
||||
raise JWKError("Precomputed private key parameters are incomplete.")
|
||||
|
||||
p = base64_to_long(jwk_dict["p"])
|
||||
q = base64_to_long(jwk_dict["q"])
|
||||
dp = base64_to_long(jwk_dict["dp"])
|
||||
dq = base64_to_long(jwk_dict["dq"])
|
||||
qi = base64_to_long(jwk_dict["qi"])
|
||||
else:
|
||||
# The precomputed private key parameters are not available,
|
||||
# so we use cryptography's API to fill them in.
|
||||
p, q = rsa.rsa_recover_prime_factors(n, e, d)
|
||||
dp = rsa.rsa_crt_dmp1(d, p)
|
||||
dq = rsa.rsa_crt_dmq1(d, q)
|
||||
qi = rsa.rsa_crt_iqmp(p, q)
|
||||
|
||||
private = rsa.RSAPrivateNumbers(p, q, d, dp, dq, qi, public)
|
||||
|
||||
return private.private_key(self.cryptography_backend())
|
||||
|
||||
def _process_cert(self, key):
|
||||
key = load_pem_x509_certificate(key, self.cryptography_backend())
|
||||
self.prepared_key = key.public_key()
|
||||
|
||||
def sign(self, msg):
|
||||
try:
|
||||
signature = self.prepared_key.sign(msg, padding.PKCS1v15(), self.hash_alg())
|
||||
except Exception as e:
|
||||
raise JWKError(e)
|
||||
return signature
|
||||
|
||||
def verify(self, msg, sig):
|
||||
if not self.is_public():
|
||||
warnings.warn("Attempting to verify a message with a private key. " "This is not recommended.")
|
||||
|
||||
try:
|
||||
self.public_key().prepared_key.verify(sig, msg, padding.PKCS1v15(), self.hash_alg())
|
||||
return True
|
||||
except InvalidSignature:
|
||||
return False
|
||||
|
||||
def is_public(self):
|
||||
return hasattr(self.prepared_key, "public_bytes")
|
||||
|
||||
def public_key(self):
|
||||
if self.is_public():
|
||||
return self
|
||||
return self.__class__(self.prepared_key.public_key(), self._algorithm)
|
||||
|
||||
def to_pem(self, pem_format="PKCS8"):
|
||||
if self.is_public():
|
||||
if pem_format == "PKCS8":
|
||||
fmt = serialization.PublicFormat.SubjectPublicKeyInfo
|
||||
elif pem_format == "PKCS1":
|
||||
fmt = serialization.PublicFormat.PKCS1
|
||||
else:
|
||||
raise ValueError("Invalid format specified: %r" % pem_format)
|
||||
pem = self.prepared_key.public_bytes(encoding=serialization.Encoding.PEM, format=fmt)
|
||||
return pem
|
||||
|
||||
if pem_format == "PKCS8":
|
||||
fmt = serialization.PrivateFormat.PKCS8
|
||||
elif pem_format == "PKCS1":
|
||||
fmt = serialization.PrivateFormat.TraditionalOpenSSL
|
||||
else:
|
||||
raise ValueError("Invalid format specified: %r" % pem_format)
|
||||
|
||||
return self.prepared_key.private_bytes(
|
||||
encoding=serialization.Encoding.PEM, format=fmt, encryption_algorithm=serialization.NoEncryption()
|
||||
)
|
||||
|
||||
def to_dict(self):
|
||||
if not self.is_public():
|
||||
public_key = self.prepared_key.public_key()
|
||||
else:
|
||||
public_key = self.prepared_key
|
||||
|
||||
data = {
|
||||
"alg": self._algorithm,
|
||||
"kty": "RSA",
|
||||
"n": long_to_base64(public_key.public_numbers().n).decode("ASCII"),
|
||||
"e": long_to_base64(public_key.public_numbers().e).decode("ASCII"),
|
||||
}
|
||||
|
||||
if not self.is_public():
|
||||
data.update(
|
||||
{
|
||||
"d": long_to_base64(self.prepared_key.private_numbers().d).decode("ASCII"),
|
||||
"p": long_to_base64(self.prepared_key.private_numbers().p).decode("ASCII"),
|
||||
"q": long_to_base64(self.prepared_key.private_numbers().q).decode("ASCII"),
|
||||
"dp": long_to_base64(self.prepared_key.private_numbers().dmp1).decode("ASCII"),
|
||||
"dq": long_to_base64(self.prepared_key.private_numbers().dmq1).decode("ASCII"),
|
||||
"qi": long_to_base64(self.prepared_key.private_numbers().iqmp).decode("ASCII"),
|
||||
}
|
||||
)
|
||||
|
||||
return data
|
||||
|
||||
def wrap_key(self, key_data):
|
||||
try:
|
||||
wrapped_key = self.prepared_key.encrypt(key_data, self.padding)
|
||||
except Exception as e:
|
||||
raise JWEError(e)
|
||||
|
||||
return wrapped_key
|
||||
|
||||
def unwrap_key(self, wrapped_key):
|
||||
try:
|
||||
unwrapped_key = self.prepared_key.decrypt(wrapped_key, self.padding)
|
||||
return unwrapped_key
|
||||
except Exception as e:
|
||||
raise JWEError(e)
|
||||
|
||||
|
||||
class CryptographyAESKey(Key):
|
||||
KEY_128 = (ALGORITHMS.A128GCM, ALGORITHMS.A128GCMKW, ALGORITHMS.A128KW, ALGORITHMS.A128CBC)
|
||||
KEY_192 = (ALGORITHMS.A192GCM, ALGORITHMS.A192GCMKW, ALGORITHMS.A192KW, ALGORITHMS.A192CBC)
|
||||
KEY_256 = (
|
||||
ALGORITHMS.A256GCM,
|
||||
ALGORITHMS.A256GCMKW,
|
||||
ALGORITHMS.A256KW,
|
||||
ALGORITHMS.A128CBC_HS256,
|
||||
ALGORITHMS.A256CBC,
|
||||
)
|
||||
KEY_384 = (ALGORITHMS.A192CBC_HS384,)
|
||||
KEY_512 = (ALGORITHMS.A256CBC_HS512,)
|
||||
|
||||
AES_KW_ALGS = (ALGORITHMS.A128KW, ALGORITHMS.A192KW, ALGORITHMS.A256KW)
|
||||
|
||||
MODES = {
|
||||
ALGORITHMS.A128GCM: modes.GCM,
|
||||
ALGORITHMS.A192GCM: modes.GCM,
|
||||
ALGORITHMS.A256GCM: modes.GCM,
|
||||
ALGORITHMS.A128CBC_HS256: modes.CBC,
|
||||
ALGORITHMS.A192CBC_HS384: modes.CBC,
|
||||
ALGORITHMS.A256CBC_HS512: modes.CBC,
|
||||
ALGORITHMS.A128CBC: modes.CBC,
|
||||
ALGORITHMS.A192CBC: modes.CBC,
|
||||
ALGORITHMS.A256CBC: modes.CBC,
|
||||
ALGORITHMS.A128GCMKW: modes.GCM,
|
||||
ALGORITHMS.A192GCMKW: modes.GCM,
|
||||
ALGORITHMS.A256GCMKW: modes.GCM,
|
||||
ALGORITHMS.A128KW: None,
|
||||
ALGORITHMS.A192KW: None,
|
||||
ALGORITHMS.A256KW: None,
|
||||
}
|
||||
|
||||
def __init__(self, key, algorithm):
|
||||
if algorithm not in ALGORITHMS.AES:
|
||||
raise JWKError("%s is not a valid AES algorithm" % algorithm)
|
||||
if algorithm not in ALGORITHMS.SUPPORTED.union(ALGORITHMS.AES_PSEUDO):
|
||||
raise JWKError("%s is not a supported algorithm" % algorithm)
|
||||
|
||||
self._algorithm = algorithm
|
||||
self._mode = self.MODES.get(self._algorithm)
|
||||
|
||||
if algorithm in self.KEY_128 and len(key) != 16:
|
||||
raise JWKError(f"Key must be 128 bit for alg {algorithm}")
|
||||
elif algorithm in self.KEY_192 and len(key) != 24:
|
||||
raise JWKError(f"Key must be 192 bit for alg {algorithm}")
|
||||
elif algorithm in self.KEY_256 and len(key) != 32:
|
||||
raise JWKError(f"Key must be 256 bit for alg {algorithm}")
|
||||
elif algorithm in self.KEY_384 and len(key) != 48:
|
||||
raise JWKError(f"Key must be 384 bit for alg {algorithm}")
|
||||
elif algorithm in self.KEY_512 and len(key) != 64:
|
||||
raise JWKError(f"Key must be 512 bit for alg {algorithm}")
|
||||
|
||||
self._key = key
|
||||
|
||||
def to_dict(self):
|
||||
data = {"alg": self._algorithm, "kty": "oct", "k": base64url_encode(self._key)}
|
||||
return data
|
||||
|
||||
def encrypt(self, plain_text, aad=None):
|
||||
plain_text = ensure_binary(plain_text)
|
||||
try:
|
||||
iv = get_random_bytes(algorithms.AES.block_size // 8)
|
||||
mode = self._mode(iv)
|
||||
if mode.name == "GCM":
|
||||
cipher = aead.AESGCM(self._key)
|
||||
cipher_text_and_tag = cipher.encrypt(iv, plain_text, aad)
|
||||
cipher_text = cipher_text_and_tag[: len(cipher_text_and_tag) - 16]
|
||||
auth_tag = cipher_text_and_tag[-16:]
|
||||
else:
|
||||
cipher = Cipher(algorithms.AES(self._key), mode, backend=default_backend())
|
||||
encryptor = cipher.encryptor()
|
||||
padder = PKCS7(algorithms.AES.block_size).padder()
|
||||
padded_data = padder.update(plain_text)
|
||||
padded_data += padder.finalize()
|
||||
cipher_text = encryptor.update(padded_data) + encryptor.finalize()
|
||||
auth_tag = None
|
||||
return iv, cipher_text, auth_tag
|
||||
except Exception as e:
|
||||
raise JWEError(e)
|
||||
|
||||
def decrypt(self, cipher_text, iv=None, aad=None, tag=None):
|
||||
cipher_text = ensure_binary(cipher_text)
|
||||
try:
|
||||
iv = ensure_binary(iv)
|
||||
mode = self._mode(iv)
|
||||
if mode.name == "GCM":
|
||||
if tag is None:
|
||||
raise ValueError("tag cannot be None")
|
||||
cipher = aead.AESGCM(self._key)
|
||||
cipher_text_and_tag = cipher_text + tag
|
||||
try:
|
||||
plain_text = cipher.decrypt(iv, cipher_text_and_tag, aad)
|
||||
except InvalidTag:
|
||||
raise JWEError("Invalid JWE Auth Tag")
|
||||
else:
|
||||
cipher = Cipher(algorithms.AES(self._key), mode, backend=default_backend())
|
||||
decryptor = cipher.decryptor()
|
||||
padded_plain_text = decryptor.update(cipher_text)
|
||||
padded_plain_text += decryptor.finalize()
|
||||
unpadder = PKCS7(algorithms.AES.block_size).unpadder()
|
||||
plain_text = unpadder.update(padded_plain_text)
|
||||
plain_text += unpadder.finalize()
|
||||
|
||||
return plain_text
|
||||
except Exception as e:
|
||||
raise JWEError(e)
|
||||
|
||||
def wrap_key(self, key_data):
|
||||
key_data = ensure_binary(key_data)
|
||||
cipher_text = aes_key_wrap(self._key, key_data, default_backend())
|
||||
return cipher_text # IV, cipher text, auth tag
|
||||
|
||||
def unwrap_key(self, wrapped_key):
|
||||
wrapped_key = ensure_binary(wrapped_key)
|
||||
try:
|
||||
plain_text = aes_key_unwrap(self._key, wrapped_key, default_backend())
|
||||
except InvalidUnwrap as cause:
|
||||
raise JWEError(cause)
|
||||
return plain_text
|
||||
|
||||
|
||||
class CryptographyHMACKey(Key):
|
||||
"""
|
||||
Performs signing and verification operations using HMAC
|
||||
and the specified hash function.
|
||||
"""
|
||||
|
||||
ALG_MAP = {ALGORITHMS.HS256: hashes.SHA256(), ALGORITHMS.HS384: hashes.SHA384(), ALGORITHMS.HS512: hashes.SHA512()}
|
||||
|
||||
def __init__(self, key, algorithm):
|
||||
if algorithm not in ALGORITHMS.HMAC:
|
||||
raise JWKError("hash_alg: %s is not a valid hash algorithm" % algorithm)
|
||||
self._algorithm = algorithm
|
||||
self._hash_alg = self.ALG_MAP.get(algorithm)
|
||||
|
||||
if isinstance(key, dict):
|
||||
self.prepared_key = self._process_jwk(key)
|
||||
return
|
||||
|
||||
if not isinstance(key, str) and not isinstance(key, bytes):
|
||||
raise JWKError("Expecting a string- or bytes-formatted key.")
|
||||
|
||||
if isinstance(key, str):
|
||||
key = key.encode("utf-8")
|
||||
|
||||
invalid_strings = [
|
||||
b"-----BEGIN PUBLIC KEY-----",
|
||||
b"-----BEGIN RSA PUBLIC KEY-----",
|
||||
b"-----BEGIN CERTIFICATE-----",
|
||||
b"ssh-rsa",
|
||||
]
|
||||
|
||||
if any(string_value in key for string_value in invalid_strings):
|
||||
raise JWKError(
|
||||
"The specified key is an asymmetric key or x509 certificate and"
|
||||
" should not be used as an HMAC secret."
|
||||
)
|
||||
|
||||
self.prepared_key = key
|
||||
|
||||
def _process_jwk(self, jwk_dict):
|
||||
if not jwk_dict.get("kty") == "oct":
|
||||
raise JWKError("Incorrect key type. Expected: 'oct', Received: %s" % jwk_dict.get("kty"))
|
||||
|
||||
k = jwk_dict.get("k")
|
||||
k = k.encode("utf-8")
|
||||
k = bytes(k)
|
||||
k = base64url_decode(k)
|
||||
|
||||
return k
|
||||
|
||||
def to_dict(self):
|
||||
return {
|
||||
"alg": self._algorithm,
|
||||
"kty": "oct",
|
||||
"k": base64url_encode(self.prepared_key).decode("ASCII"),
|
||||
}
|
||||
|
||||
def sign(self, msg):
|
||||
msg = ensure_binary(msg)
|
||||
h = hmac.HMAC(self.prepared_key, self._hash_alg, backend=default_backend())
|
||||
h.update(msg)
|
||||
signature = h.finalize()
|
||||
return signature
|
||||
|
||||
def verify(self, msg, sig):
|
||||
msg = ensure_binary(msg)
|
||||
sig = ensure_binary(sig)
|
||||
h = hmac.HMAC(self.prepared_key, self._hash_alg, backend=default_backend())
|
||||
h.update(msg)
|
||||
try:
|
||||
h.verify(sig)
|
||||
verified = True
|
||||
except InvalidSignature:
|
||||
verified = False
|
||||
return verified
|
Reference in New Issue
Block a user