1
0
mirror of https://gitlab.com/MoonTestUse1/AdministrationItDepartmens.git synced 2025-08-14 00:25:46 +02:00
Files
AdministrationItDepartmens/venv/Lib/site-packages/jose/backends/cryptography_backend.py
MoonTestUse1 e81df4c87e Initial commit
2024-12-23 19:27:44 +06:00

606 lines
22 KiB
Python

import math
import warnings
from cryptography.exceptions import InvalidSignature, InvalidTag
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.bindings.openssl.binding import Binding
from cryptography.hazmat.primitives import hashes, hmac, serialization
from cryptography.hazmat.primitives.asymmetric import ec, padding, rsa
from cryptography.hazmat.primitives.asymmetric.utils import decode_dss_signature, encode_dss_signature
from cryptography.hazmat.primitives.ciphers import Cipher, aead, algorithms, modes
from cryptography.hazmat.primitives.keywrap import InvalidUnwrap, aes_key_unwrap, aes_key_wrap
from cryptography.hazmat.primitives.padding import PKCS7
from cryptography.hazmat.primitives.serialization import load_pem_private_key, load_pem_public_key
from cryptography.utils import int_to_bytes
from cryptography.x509 import load_pem_x509_certificate
from ..constants import ALGORITHMS
from ..exceptions import JWEError, JWKError
from ..utils import base64_to_long, base64url_decode, base64url_encode, ensure_binary, long_to_base64
from .base import Key
_binding = None
def get_random_bytes(num_bytes):
"""
Get random bytes
Currently, Cryptography returns OS random bytes. If you want OpenSSL
generated random bytes, you'll have to switch the RAND engine after
initializing the OpenSSL backend
Args:
num_bytes (int): Number of random bytes to generate and return
Returns:
bytes: Random bytes
"""
global _binding
if _binding is None:
_binding = Binding()
buf = _binding.ffi.new("char[]", num_bytes)
_binding.lib.RAND_bytes(buf, num_bytes)
rand_bytes = _binding.ffi.buffer(buf, num_bytes)[:]
return rand_bytes
class CryptographyECKey(Key):
SHA256 = hashes.SHA256
SHA384 = hashes.SHA384
SHA512 = hashes.SHA512
def __init__(self, key, algorithm, cryptography_backend=default_backend):
if algorithm not in ALGORITHMS.EC:
raise JWKError("hash_alg: %s is not a valid hash algorithm" % algorithm)
self.hash_alg = {
ALGORITHMS.ES256: self.SHA256,
ALGORITHMS.ES384: self.SHA384,
ALGORITHMS.ES512: self.SHA512,
}.get(algorithm)
self._algorithm = algorithm
self.cryptography_backend = cryptography_backend
if hasattr(key, "public_bytes") or hasattr(key, "private_bytes"):
self.prepared_key = key
return
if hasattr(key, "to_pem"):
# convert to PEM and let cryptography below load it as PEM
key = key.to_pem().decode("utf-8")
if isinstance(key, dict):
self.prepared_key = self._process_jwk(key)
return
if isinstance(key, str):
key = key.encode("utf-8")
if isinstance(key, bytes):
# Attempt to load key. We don't know if it's
# a Public Key or a Private Key, so we try
# the Public Key first.
try:
try:
key = load_pem_public_key(key, self.cryptography_backend())
except ValueError:
key = load_pem_private_key(key, password=None, backend=self.cryptography_backend())
except Exception as e:
raise JWKError(e)
self.prepared_key = key
return
raise JWKError("Unable to parse an ECKey from key: %s" % key)
def _process_jwk(self, jwk_dict):
if not jwk_dict.get("kty") == "EC":
raise JWKError("Incorrect key type. Expected: 'EC', Received: %s" % jwk_dict.get("kty"))
if not all(k in jwk_dict for k in ["x", "y", "crv"]):
raise JWKError("Mandatory parameters are missing")
x = base64_to_long(jwk_dict.get("x"))
y = base64_to_long(jwk_dict.get("y"))
curve = {
"P-256": ec.SECP256R1,
"P-384": ec.SECP384R1,
"P-521": ec.SECP521R1,
}[jwk_dict["crv"]]
public = ec.EllipticCurvePublicNumbers(x, y, curve())
if "d" in jwk_dict:
d = base64_to_long(jwk_dict.get("d"))
private = ec.EllipticCurvePrivateNumbers(d, public)
return private.private_key(self.cryptography_backend())
else:
return public.public_key(self.cryptography_backend())
def _sig_component_length(self):
"""Determine the correct serialization length for an encoded signature component.
This is the number of bytes required to encode the maximum key value.
"""
return int(math.ceil(self.prepared_key.key_size / 8.0))
def _der_to_raw(self, der_signature):
"""Convert signature from DER encoding to RAW encoding."""
r, s = decode_dss_signature(der_signature)
component_length = self._sig_component_length()
return int_to_bytes(r, component_length) + int_to_bytes(s, component_length)
def _raw_to_der(self, raw_signature):
"""Convert signature from RAW encoding to DER encoding."""
component_length = self._sig_component_length()
if len(raw_signature) != int(2 * component_length):
raise ValueError("Invalid signature")
r_bytes = raw_signature[:component_length]
s_bytes = raw_signature[component_length:]
r = int.from_bytes(r_bytes, "big")
s = int.from_bytes(s_bytes, "big")
return encode_dss_signature(r, s)
def sign(self, msg):
if self.hash_alg.digest_size * 8 > self.prepared_key.curve.key_size:
raise TypeError(
"this curve (%s) is too short "
"for your digest (%d)" % (self.prepared_key.curve.name, 8 * self.hash_alg.digest_size)
)
signature = self.prepared_key.sign(msg, ec.ECDSA(self.hash_alg()))
return self._der_to_raw(signature)
def verify(self, msg, sig):
try:
signature = self._raw_to_der(sig)
self.prepared_key.verify(signature, msg, ec.ECDSA(self.hash_alg()))
return True
except Exception:
return False
def is_public(self):
return hasattr(self.prepared_key, "public_bytes")
def public_key(self):
if self.is_public():
return self
return self.__class__(self.prepared_key.public_key(), self._algorithm)
def to_pem(self):
if self.is_public():
pem = self.prepared_key.public_bytes(
encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo
)
return pem
pem = self.prepared_key.private_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PrivateFormat.TraditionalOpenSSL,
encryption_algorithm=serialization.NoEncryption(),
)
return pem
def to_dict(self):
if not self.is_public():
public_key = self.prepared_key.public_key()
else:
public_key = self.prepared_key
crv = {
"secp256r1": "P-256",
"secp384r1": "P-384",
"secp521r1": "P-521",
}[self.prepared_key.curve.name]
# Calculate the key size in bytes. Section 6.2.1.2 and 6.2.1.3 of
# RFC7518 prescribes that the 'x', 'y' and 'd' parameters of the curve
# points must be encoded as octed-strings of this length.
key_size = (self.prepared_key.curve.key_size + 7) // 8
data = {
"alg": self._algorithm,
"kty": "EC",
"crv": crv,
"x": long_to_base64(public_key.public_numbers().x, size=key_size).decode("ASCII"),
"y": long_to_base64(public_key.public_numbers().y, size=key_size).decode("ASCII"),
}
if not self.is_public():
private_value = self.prepared_key.private_numbers().private_value
data["d"] = long_to_base64(private_value, size=key_size).decode("ASCII")
return data
class CryptographyRSAKey(Key):
SHA256 = hashes.SHA256
SHA384 = hashes.SHA384
SHA512 = hashes.SHA512
RSA1_5 = padding.PKCS1v15()
RSA_OAEP = padding.OAEP(padding.MGF1(hashes.SHA1()), hashes.SHA1(), None)
RSA_OAEP_256 = padding.OAEP(padding.MGF1(hashes.SHA256()), hashes.SHA256(), None)
def __init__(self, key, algorithm, cryptography_backend=default_backend):
if algorithm not in ALGORITHMS.RSA:
raise JWKError("hash_alg: %s is not a valid hash algorithm" % algorithm)
self.hash_alg = {
ALGORITHMS.RS256: self.SHA256,
ALGORITHMS.RS384: self.SHA384,
ALGORITHMS.RS512: self.SHA512,
}.get(algorithm)
self._algorithm = algorithm
self.padding = {
ALGORITHMS.RSA1_5: self.RSA1_5,
ALGORITHMS.RSA_OAEP: self.RSA_OAEP,
ALGORITHMS.RSA_OAEP_256: self.RSA_OAEP_256,
}.get(algorithm)
self.cryptography_backend = cryptography_backend
# if it conforms to RSAPublicKey interface
if hasattr(key, "public_bytes") and hasattr(key, "public_numbers"):
self.prepared_key = key
return
if isinstance(key, dict):
self.prepared_key = self._process_jwk(key)
return
if isinstance(key, str):
key = key.encode("utf-8")
if isinstance(key, bytes):
try:
if key.startswith(b"-----BEGIN CERTIFICATE-----"):
self._process_cert(key)
return
try:
self.prepared_key = load_pem_public_key(key, self.cryptography_backend())
except ValueError:
self.prepared_key = load_pem_private_key(key, password=None, backend=self.cryptography_backend())
except Exception as e:
raise JWKError(e)
return
raise JWKError("Unable to parse an RSA_JWK from key: %s" % key)
def _process_jwk(self, jwk_dict):
if not jwk_dict.get("kty") == "RSA":
raise JWKError("Incorrect key type. Expected: 'RSA', Received: %s" % jwk_dict.get("kty"))
e = base64_to_long(jwk_dict.get("e", 256))
n = base64_to_long(jwk_dict.get("n"))
public = rsa.RSAPublicNumbers(e, n)
if "d" not in jwk_dict:
return public.public_key(self.cryptography_backend())
else:
# This is a private key.
d = base64_to_long(jwk_dict.get("d"))
extra_params = ["p", "q", "dp", "dq", "qi"]
if any(k in jwk_dict for k in extra_params):
# Precomputed private key parameters are available.
if not all(k in jwk_dict for k in extra_params):
# These values must be present when 'p' is according to
# Section 6.3.2 of RFC7518, so if they are not we raise
# an error.
raise JWKError("Precomputed private key parameters are incomplete.")
p = base64_to_long(jwk_dict["p"])
q = base64_to_long(jwk_dict["q"])
dp = base64_to_long(jwk_dict["dp"])
dq = base64_to_long(jwk_dict["dq"])
qi = base64_to_long(jwk_dict["qi"])
else:
# The precomputed private key parameters are not available,
# so we use cryptography's API to fill them in.
p, q = rsa.rsa_recover_prime_factors(n, e, d)
dp = rsa.rsa_crt_dmp1(d, p)
dq = rsa.rsa_crt_dmq1(d, q)
qi = rsa.rsa_crt_iqmp(p, q)
private = rsa.RSAPrivateNumbers(p, q, d, dp, dq, qi, public)
return private.private_key(self.cryptography_backend())
def _process_cert(self, key):
key = load_pem_x509_certificate(key, self.cryptography_backend())
self.prepared_key = key.public_key()
def sign(self, msg):
try:
signature = self.prepared_key.sign(msg, padding.PKCS1v15(), self.hash_alg())
except Exception as e:
raise JWKError(e)
return signature
def verify(self, msg, sig):
if not self.is_public():
warnings.warn("Attempting to verify a message with a private key. " "This is not recommended.")
try:
self.public_key().prepared_key.verify(sig, msg, padding.PKCS1v15(), self.hash_alg())
return True
except InvalidSignature:
return False
def is_public(self):
return hasattr(self.prepared_key, "public_bytes")
def public_key(self):
if self.is_public():
return self
return self.__class__(self.prepared_key.public_key(), self._algorithm)
def to_pem(self, pem_format="PKCS8"):
if self.is_public():
if pem_format == "PKCS8":
fmt = serialization.PublicFormat.SubjectPublicKeyInfo
elif pem_format == "PKCS1":
fmt = serialization.PublicFormat.PKCS1
else:
raise ValueError("Invalid format specified: %r" % pem_format)
pem = self.prepared_key.public_bytes(encoding=serialization.Encoding.PEM, format=fmt)
return pem
if pem_format == "PKCS8":
fmt = serialization.PrivateFormat.PKCS8
elif pem_format == "PKCS1":
fmt = serialization.PrivateFormat.TraditionalOpenSSL
else:
raise ValueError("Invalid format specified: %r" % pem_format)
return self.prepared_key.private_bytes(
encoding=serialization.Encoding.PEM, format=fmt, encryption_algorithm=serialization.NoEncryption()
)
def to_dict(self):
if not self.is_public():
public_key = self.prepared_key.public_key()
else:
public_key = self.prepared_key
data = {
"alg": self._algorithm,
"kty": "RSA",
"n": long_to_base64(public_key.public_numbers().n).decode("ASCII"),
"e": long_to_base64(public_key.public_numbers().e).decode("ASCII"),
}
if not self.is_public():
data.update(
{
"d": long_to_base64(self.prepared_key.private_numbers().d).decode("ASCII"),
"p": long_to_base64(self.prepared_key.private_numbers().p).decode("ASCII"),
"q": long_to_base64(self.prepared_key.private_numbers().q).decode("ASCII"),
"dp": long_to_base64(self.prepared_key.private_numbers().dmp1).decode("ASCII"),
"dq": long_to_base64(self.prepared_key.private_numbers().dmq1).decode("ASCII"),
"qi": long_to_base64(self.prepared_key.private_numbers().iqmp).decode("ASCII"),
}
)
return data
def wrap_key(self, key_data):
try:
wrapped_key = self.prepared_key.encrypt(key_data, self.padding)
except Exception as e:
raise JWEError(e)
return wrapped_key
def unwrap_key(self, wrapped_key):
try:
unwrapped_key = self.prepared_key.decrypt(wrapped_key, self.padding)
return unwrapped_key
except Exception as e:
raise JWEError(e)
class CryptographyAESKey(Key):
KEY_128 = (ALGORITHMS.A128GCM, ALGORITHMS.A128GCMKW, ALGORITHMS.A128KW, ALGORITHMS.A128CBC)
KEY_192 = (ALGORITHMS.A192GCM, ALGORITHMS.A192GCMKW, ALGORITHMS.A192KW, ALGORITHMS.A192CBC)
KEY_256 = (
ALGORITHMS.A256GCM,
ALGORITHMS.A256GCMKW,
ALGORITHMS.A256KW,
ALGORITHMS.A128CBC_HS256,
ALGORITHMS.A256CBC,
)
KEY_384 = (ALGORITHMS.A192CBC_HS384,)
KEY_512 = (ALGORITHMS.A256CBC_HS512,)
AES_KW_ALGS = (ALGORITHMS.A128KW, ALGORITHMS.A192KW, ALGORITHMS.A256KW)
MODES = {
ALGORITHMS.A128GCM: modes.GCM,
ALGORITHMS.A192GCM: modes.GCM,
ALGORITHMS.A256GCM: modes.GCM,
ALGORITHMS.A128CBC_HS256: modes.CBC,
ALGORITHMS.A192CBC_HS384: modes.CBC,
ALGORITHMS.A256CBC_HS512: modes.CBC,
ALGORITHMS.A128CBC: modes.CBC,
ALGORITHMS.A192CBC: modes.CBC,
ALGORITHMS.A256CBC: modes.CBC,
ALGORITHMS.A128GCMKW: modes.GCM,
ALGORITHMS.A192GCMKW: modes.GCM,
ALGORITHMS.A256GCMKW: modes.GCM,
ALGORITHMS.A128KW: None,
ALGORITHMS.A192KW: None,
ALGORITHMS.A256KW: None,
}
def __init__(self, key, algorithm):
if algorithm not in ALGORITHMS.AES:
raise JWKError("%s is not a valid AES algorithm" % algorithm)
if algorithm not in ALGORITHMS.SUPPORTED.union(ALGORITHMS.AES_PSEUDO):
raise JWKError("%s is not a supported algorithm" % algorithm)
self._algorithm = algorithm
self._mode = self.MODES.get(self._algorithm)
if algorithm in self.KEY_128 and len(key) != 16:
raise JWKError(f"Key must be 128 bit for alg {algorithm}")
elif algorithm in self.KEY_192 and len(key) != 24:
raise JWKError(f"Key must be 192 bit for alg {algorithm}")
elif algorithm in self.KEY_256 and len(key) != 32:
raise JWKError(f"Key must be 256 bit for alg {algorithm}")
elif algorithm in self.KEY_384 and len(key) != 48:
raise JWKError(f"Key must be 384 bit for alg {algorithm}")
elif algorithm in self.KEY_512 and len(key) != 64:
raise JWKError(f"Key must be 512 bit for alg {algorithm}")
self._key = key
def to_dict(self):
data = {"alg": self._algorithm, "kty": "oct", "k": base64url_encode(self._key)}
return data
def encrypt(self, plain_text, aad=None):
plain_text = ensure_binary(plain_text)
try:
iv = get_random_bytes(algorithms.AES.block_size // 8)
mode = self._mode(iv)
if mode.name == "GCM":
cipher = aead.AESGCM(self._key)
cipher_text_and_tag = cipher.encrypt(iv, plain_text, aad)
cipher_text = cipher_text_and_tag[: len(cipher_text_and_tag) - 16]
auth_tag = cipher_text_and_tag[-16:]
else:
cipher = Cipher(algorithms.AES(self._key), mode, backend=default_backend())
encryptor = cipher.encryptor()
padder = PKCS7(algorithms.AES.block_size).padder()
padded_data = padder.update(plain_text)
padded_data += padder.finalize()
cipher_text = encryptor.update(padded_data) + encryptor.finalize()
auth_tag = None
return iv, cipher_text, auth_tag
except Exception as e:
raise JWEError(e)
def decrypt(self, cipher_text, iv=None, aad=None, tag=None):
cipher_text = ensure_binary(cipher_text)
try:
iv = ensure_binary(iv)
mode = self._mode(iv)
if mode.name == "GCM":
if tag is None:
raise ValueError("tag cannot be None")
cipher = aead.AESGCM(self._key)
cipher_text_and_tag = cipher_text + tag
try:
plain_text = cipher.decrypt(iv, cipher_text_and_tag, aad)
except InvalidTag:
raise JWEError("Invalid JWE Auth Tag")
else:
cipher = Cipher(algorithms.AES(self._key), mode, backend=default_backend())
decryptor = cipher.decryptor()
padded_plain_text = decryptor.update(cipher_text)
padded_plain_text += decryptor.finalize()
unpadder = PKCS7(algorithms.AES.block_size).unpadder()
plain_text = unpadder.update(padded_plain_text)
plain_text += unpadder.finalize()
return plain_text
except Exception as e:
raise JWEError(e)
def wrap_key(self, key_data):
key_data = ensure_binary(key_data)
cipher_text = aes_key_wrap(self._key, key_data, default_backend())
return cipher_text # IV, cipher text, auth tag
def unwrap_key(self, wrapped_key):
wrapped_key = ensure_binary(wrapped_key)
try:
plain_text = aes_key_unwrap(self._key, wrapped_key, default_backend())
except InvalidUnwrap as cause:
raise JWEError(cause)
return plain_text
class CryptographyHMACKey(Key):
"""
Performs signing and verification operations using HMAC
and the specified hash function.
"""
ALG_MAP = {ALGORITHMS.HS256: hashes.SHA256(), ALGORITHMS.HS384: hashes.SHA384(), ALGORITHMS.HS512: hashes.SHA512()}
def __init__(self, key, algorithm):
if algorithm not in ALGORITHMS.HMAC:
raise JWKError("hash_alg: %s is not a valid hash algorithm" % algorithm)
self._algorithm = algorithm
self._hash_alg = self.ALG_MAP.get(algorithm)
if isinstance(key, dict):
self.prepared_key = self._process_jwk(key)
return
if not isinstance(key, str) and not isinstance(key, bytes):
raise JWKError("Expecting a string- or bytes-formatted key.")
if isinstance(key, str):
key = key.encode("utf-8")
invalid_strings = [
b"-----BEGIN PUBLIC KEY-----",
b"-----BEGIN RSA PUBLIC KEY-----",
b"-----BEGIN CERTIFICATE-----",
b"ssh-rsa",
]
if any(string_value in key for string_value in invalid_strings):
raise JWKError(
"The specified key is an asymmetric key or x509 certificate and"
" should not be used as an HMAC secret."
)
self.prepared_key = key
def _process_jwk(self, jwk_dict):
if not jwk_dict.get("kty") == "oct":
raise JWKError("Incorrect key type. Expected: 'oct', Received: %s" % jwk_dict.get("kty"))
k = jwk_dict.get("k")
k = k.encode("utf-8")
k = bytes(k)
k = base64url_decode(k)
return k
def to_dict(self):
return {
"alg": self._algorithm,
"kty": "oct",
"k": base64url_encode(self.prepared_key).decode("ASCII"),
}
def sign(self, msg):
msg = ensure_binary(msg)
h = hmac.HMAC(self.prepared_key, self._hash_alg, backend=default_backend())
h.update(msg)
signature = h.finalize()
return signature
def verify(self, msg, sig):
msg = ensure_binary(msg)
sig = ensure_binary(sig)
h = hmac.HMAC(self.prepared_key, self._hash_alg, backend=default_backend())
h.update(msg)
try:
h.verify(sig)
verified = True
except InvalidSignature:
verified = False
return verified