1
0
mirror of https://gitlab.com/MoonTestUse1/AdministrationItDepartmens.git synced 2025-08-14 00:25:46 +02:00
Files
AdministrationItDepartmens/venv/Lib/site-packages/jose/backends/rsa_backend.py
MoonTestUse1 e81df4c87e Initial commit
2024-12-23 19:27:44 +06:00

285 lines
11 KiB
Python

import binascii
import warnings
import rsa as pyrsa
import rsa.pem as pyrsa_pem
from pyasn1.error import PyAsn1Error
from rsa import DecryptionError
from jose.backends._asn1 import (
rsa_private_key_pkcs1_to_pkcs8,
rsa_private_key_pkcs8_to_pkcs1,
rsa_public_key_pkcs1_to_pkcs8,
)
from jose.backends.base import Key
from jose.constants import ALGORITHMS
from jose.exceptions import JWEError, JWKError
from jose.utils import base64_to_long, long_to_base64
ALGORITHMS.SUPPORTED.remove(ALGORITHMS.RSA_OAEP) # RSA OAEP not supported
LEGACY_INVALID_PKCS8_RSA_HEADER = binascii.unhexlify(
"30" # sequence
"8204BD" # DER-encoded sequence contents length of 1213 bytes -- INCORRECT STATIC LENGTH
"020100" # integer: 0 -- Version
"30" # sequence
"0D" # DER-encoded sequence contents length of 13 bytes -- PrivateKeyAlgorithmIdentifier
"06092A864886F70D010101" # OID -- rsaEncryption
"0500" # NULL -- parameters
)
ASN1_SEQUENCE_ID = binascii.unhexlify("30")
RSA_ENCRYPTION_ASN1_OID = "1.2.840.113549.1.1.1"
# Functions gcd and rsa_recover_prime_factors were copied from cryptography 1.9
# to enable pure python rsa module to be in compliance with section 6.3.1 of RFC7518
# which requires only private exponent (d) for private key.
def _gcd(a, b):
"""Calculate the Greatest Common Divisor of a and b.
Unless b==0, the result will have the same sign as b (so that when
b is divided by it, the result comes out positive).
"""
while b:
a, b = b, (a % b)
return a
# Controls the number of iterations rsa_recover_prime_factors will perform
# to obtain the prime factors. Each iteration increments by 2 so the actual
# maximum attempts is half this number.
_MAX_RECOVERY_ATTEMPTS = 1000
def _rsa_recover_prime_factors(n, e, d):
"""
Compute factors p and q from the private exponent d. We assume that n has
no more than two factors. This function is adapted from code in PyCrypto.
"""
# See 8.2.2(i) in Handbook of Applied Cryptography.
ktot = d * e - 1
# The quantity d*e-1 is a multiple of phi(n), even,
# and can be represented as t*2^s.
t = ktot
while t % 2 == 0:
t = t // 2
# Cycle through all multiplicative inverses in Zn.
# The algorithm is non-deterministic, but there is a 50% chance
# any candidate a leads to successful factoring.
# See "Digitalized Signatures and Public Key Functions as Intractable
# as Factorization", M. Rabin, 1979
spotted = False
a = 2
while not spotted and a < _MAX_RECOVERY_ATTEMPTS:
k = t
# Cycle through all values a^{t*2^i}=a^k
while k < ktot:
cand = pow(a, k, n)
# Check if a^k is a non-trivial root of unity (mod n)
if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1:
# We have found a number such that (cand-1)(cand+1)=0 (mod n).
# Either of the terms divides n.
p = _gcd(cand + 1, n)
spotted = True
break
k *= 2
# This value was not any good... let's try another!
a += 2
if not spotted:
raise ValueError("Unable to compute factors p and q from exponent d.")
# Found !
q, r = divmod(n, p)
assert r == 0
p, q = sorted((p, q), reverse=True)
return (p, q)
def pem_to_spki(pem, fmt="PKCS8"):
key = RSAKey(pem, ALGORITHMS.RS256)
return key.to_pem(fmt)
def _legacy_private_key_pkcs8_to_pkcs1(pkcs8_key):
"""Legacy RSA private key PKCS8-to-PKCS1 conversion.
.. warning::
This is incorrect parsing and only works because the legacy PKCS1-to-PKCS8
encoding was also incorrect.
"""
# Only allow this processing if the prefix matches
# AND the following byte indicates an ASN1 sequence,
# as we would expect with the legacy encoding.
if not pkcs8_key.startswith(LEGACY_INVALID_PKCS8_RSA_HEADER + ASN1_SEQUENCE_ID):
raise ValueError("Invalid private key encoding")
return pkcs8_key[len(LEGACY_INVALID_PKCS8_RSA_HEADER) :]
class RSAKey(Key):
SHA256 = "SHA-256"
SHA384 = "SHA-384"
SHA512 = "SHA-512"
def __init__(self, key, algorithm):
if algorithm not in ALGORITHMS.RSA:
raise JWKError("hash_alg: %s is not a valid hash algorithm" % algorithm)
if algorithm in ALGORITHMS.RSA_KW and algorithm != ALGORITHMS.RSA1_5:
raise JWKError("alg: %s is not supported by the RSA backend" % algorithm)
self.hash_alg = {
ALGORITHMS.RS256: self.SHA256,
ALGORITHMS.RS384: self.SHA384,
ALGORITHMS.RS512: self.SHA512,
}.get(algorithm)
self._algorithm = algorithm
if isinstance(key, dict):
self._prepared_key = self._process_jwk(key)
return
if isinstance(key, (pyrsa.PublicKey, pyrsa.PrivateKey)):
self._prepared_key = key
return
if isinstance(key, str):
key = key.encode("utf-8")
if isinstance(key, bytes):
try:
self._prepared_key = pyrsa.PublicKey.load_pkcs1(key)
except ValueError:
try:
self._prepared_key = pyrsa.PublicKey.load_pkcs1_openssl_pem(key)
except ValueError:
try:
self._prepared_key = pyrsa.PrivateKey.load_pkcs1(key)
except ValueError:
try:
der = pyrsa_pem.load_pem(key, b"PRIVATE KEY")
try:
pkcs1_key = rsa_private_key_pkcs8_to_pkcs1(der)
except PyAsn1Error:
# If the key was encoded using the old, invalid,
# encoding then pyasn1 will throw an error attempting
# to parse the key.
pkcs1_key = _legacy_private_key_pkcs8_to_pkcs1(der)
self._prepared_key = pyrsa.PrivateKey.load_pkcs1(pkcs1_key, format="DER")
except ValueError as e:
raise JWKError(e)
return
raise JWKError("Unable to parse an RSA_JWK from key: %s" % key)
def _process_jwk(self, jwk_dict):
if not jwk_dict.get("kty") == "RSA":
raise JWKError("Incorrect key type. Expected: 'RSA', Received: %s" % jwk_dict.get("kty"))
e = base64_to_long(jwk_dict.get("e"))
n = base64_to_long(jwk_dict.get("n"))
if "d" not in jwk_dict:
return pyrsa.PublicKey(e=e, n=n)
else:
d = base64_to_long(jwk_dict.get("d"))
extra_params = ["p", "q", "dp", "dq", "qi"]
if any(k in jwk_dict for k in extra_params):
# Precomputed private key parameters are available.
if not all(k in jwk_dict for k in extra_params):
# These values must be present when 'p' is according to
# Section 6.3.2 of RFC7518, so if they are not we raise
# an error.
raise JWKError("Precomputed private key parameters are incomplete.")
p = base64_to_long(jwk_dict["p"])
q = base64_to_long(jwk_dict["q"])
return pyrsa.PrivateKey(e=e, n=n, d=d, p=p, q=q)
else:
p, q = _rsa_recover_prime_factors(n, e, d)
return pyrsa.PrivateKey(n=n, e=e, d=d, p=p, q=q)
def sign(self, msg):
return pyrsa.sign(msg, self._prepared_key, self.hash_alg)
def verify(self, msg, sig):
if not self.is_public():
warnings.warn("Attempting to verify a message with a private key. " "This is not recommended.")
try:
pyrsa.verify(msg, sig, self._prepared_key)
return True
except pyrsa.pkcs1.VerificationError:
return False
def is_public(self):
return isinstance(self._prepared_key, pyrsa.PublicKey)
def public_key(self):
if isinstance(self._prepared_key, pyrsa.PublicKey):
return self
return self.__class__(pyrsa.PublicKey(n=self._prepared_key.n, e=self._prepared_key.e), self._algorithm)
def to_pem(self, pem_format="PKCS8"):
if isinstance(self._prepared_key, pyrsa.PrivateKey):
der = self._prepared_key.save_pkcs1(format="DER")
if pem_format == "PKCS8":
pkcs8_der = rsa_private_key_pkcs1_to_pkcs8(der)
pem = pyrsa_pem.save_pem(pkcs8_der, pem_marker="PRIVATE KEY")
elif pem_format == "PKCS1":
pem = pyrsa_pem.save_pem(der, pem_marker="RSA PRIVATE KEY")
else:
raise ValueError(f"Invalid pem format specified: {pem_format!r}")
else:
if pem_format == "PKCS8":
pkcs1_der = self._prepared_key.save_pkcs1(format="DER")
pkcs8_der = rsa_public_key_pkcs1_to_pkcs8(pkcs1_der)
pem = pyrsa_pem.save_pem(pkcs8_der, pem_marker="PUBLIC KEY")
elif pem_format == "PKCS1":
der = self._prepared_key.save_pkcs1(format="DER")
pem = pyrsa_pem.save_pem(der, pem_marker="RSA PUBLIC KEY")
else:
raise ValueError(f"Invalid pem format specified: {pem_format!r}")
return pem
def to_dict(self):
if not self.is_public():
public_key = self.public_key()._prepared_key
else:
public_key = self._prepared_key
data = {
"alg": self._algorithm,
"kty": "RSA",
"n": long_to_base64(public_key.n).decode("ASCII"),
"e": long_to_base64(public_key.e).decode("ASCII"),
}
if not self.is_public():
data.update(
{
"d": long_to_base64(self._prepared_key.d).decode("ASCII"),
"p": long_to_base64(self._prepared_key.p).decode("ASCII"),
"q": long_to_base64(self._prepared_key.q).decode("ASCII"),
"dp": long_to_base64(self._prepared_key.exp1).decode("ASCII"),
"dq": long_to_base64(self._prepared_key.exp2).decode("ASCII"),
"qi": long_to_base64(self._prepared_key.coef).decode("ASCII"),
}
)
return data
def wrap_key(self, key_data):
if not self.is_public():
warnings.warn("Attempting to encrypt a message with a private key." " This is not recommended.")
wrapped_key = pyrsa.encrypt(key_data, self._prepared_key)
return wrapped_key
def unwrap_key(self, wrapped_key):
try:
unwrapped_key = pyrsa.decrypt(wrapped_key, self._prepared_key)
except DecryptionError as e:
raise JWEError(e)
return unwrapped_key