1
0
mirror of https://gitlab.com/MoonTestUse1/AdministrationItDepartmens.git synced 2025-08-14 00:25:46 +02:00

Initial commit

This commit is contained in:
MoonTestUse1
2024-12-23 19:27:44 +06:00
commit e81df4c87e
4952 changed files with 1705479 additions and 0 deletions

View File

@@ -0,0 +1,281 @@
"""
passlib.utils.scrypt -- scrypt hash frontend and help utilities
XXX: add this module to public docs?
"""
#==========================================================================
# imports
#==========================================================================
from __future__ import absolute_import
# core
import logging; log = logging.getLogger(__name__)
from warnings import warn
# pkg
from passlib import exc
from passlib.utils import to_bytes
from passlib.utils.compat import PYPY
# local
__all__ =[
"validate",
"scrypt",
]
#==========================================================================
# config validation
#==========================================================================
#: internal global constant for setting stdlib scrypt's maxmem (int bytes).
#: set to -1 to auto-calculate (see _load_stdlib_backend() below)
#: set to 0 for openssl default (32mb according to python docs)
#: TODO: standardize this across backends, and expose support via scrypt hash config;
#: currently not very configurable, and only applies to stdlib backend.
SCRYPT_MAXMEM = -1
#: max output length in bytes
MAX_KEYLEN = ((1 << 32) - 1) * 32
#: max ``r * p`` limit
MAX_RP = (1 << 30) - 1
# TODO: unittests for this function
def validate(n, r, p):
"""
helper which validates a set of scrypt config parameters.
scrypt will take ``O(n * r * p)`` time and ``O(n * r)`` memory.
limitations are that ``n = 2**<positive integer>``, ``n < 2**(16*r)``, ``r * p < 2 ** 30``.
:param n: scrypt rounds
:param r: scrypt block size
:param p: scrypt parallel factor
"""
if r < 1:
raise ValueError("r must be > 0: r=%r" % r)
if p < 1:
raise ValueError("p must be > 0: p=%r" % p)
if r * p > MAX_RP:
# pbkdf2-hmac-sha256 limitation - it will be requested to generate ``p*(2*r)*64`` bytes,
# but pbkdf2 can do max of (2**31-1) blocks, and sha-256 has 32 byte block size...
# so ``(2**31-1)*32 >= p*r*128`` -> ``r*p < 2**30``
raise ValueError("r * p must be < 2**30: r=%r, p=%r" % (r,p))
if n < 2 or n & (n - 1):
raise ValueError("n must be > 1, and a power of 2: n=%r" % n)
return True
UINT32_SIZE = 4
def estimate_maxmem(n, r, p, fudge=1.05):
"""
calculate memory required for parameter combination.
assumes parameters have already been validated.
.. warning::
this is derived from OpenSSL's scrypt maxmem formula;
and may not be correct for other implementations
(additional buffers, different parallelism tradeoffs, etc).
"""
# XXX: expand to provide upper bound for diff backends, or max across all of them?
# NOTE: openssl's scrypt() enforces it's maxmem parameter based on calc located at
# <openssl/providers/default/kdfs/scrypt.c>, ending in line containing "Blen + Vlen > maxmem"
# using the following formula:
# Blen = p * 128 * r
# Vlen = 32 * r * (N + 2) * sizeof(uint32_t)
# total_bytes = Blen + Vlen
maxmem = r * (128 * p + 32 * (n + 2) * UINT32_SIZE)
# add fudge factor so we don't have off-by-one mismatch w/ openssl
maxmem = int(maxmem * fudge)
return maxmem
# TODO: configuration picker (may need psutil for full effect)
#==========================================================================
# hash frontend
#==========================================================================
#: backend function used by scrypt(), filled in by _set_backend()
_scrypt = None
#: name of backend currently in use, exposed for informational purposes.
backend = None
def scrypt(secret, salt, n, r, p=1, keylen=32):
"""run SCrypt key derivation function using specified parameters.
:arg secret:
passphrase string (unicode is encoded to bytes using utf-8).
:arg salt:
salt string (unicode is encoded to bytes using utf-8).
:arg n:
integer 'N' parameter
:arg r:
integer 'r' parameter
:arg p:
integer 'p' parameter
:arg keylen:
number of bytes of key to generate.
defaults to 32 (the internal block size).
:returns:
a *keylen*-sized bytes instance
SCrypt imposes a number of constraints on it's input parameters:
* ``r * p < 2**30`` -- due to a limitation of PBKDF2-HMAC-SHA256.
* ``keylen < (2**32 - 1) * 32`` -- due to a limitation of PBKDF2-HMAC-SHA256.
* ``n`` must a be a power of 2, and > 1 -- internal limitation of scrypt() implementation
:raises ValueError: if the provided parameters are invalid (see constraints above).
.. warning::
Unless the third-party ``scrypt <https://pypi.python.org/pypi/scrypt/>``_ package
is installed, passlib will use a builtin pure-python implementation of scrypt,
which is *considerably* slower (and thus requires a much lower / less secure
``n`` value in order to be usuable). Installing the :mod:`!scrypt` package
is strongly recommended.
"""
validate(n, r, p)
secret = to_bytes(secret, param="secret")
salt = to_bytes(salt, param="salt")
if keylen < 1:
raise ValueError("keylen must be at least 1")
if keylen > MAX_KEYLEN:
raise ValueError("keylen too large, must be <= %d" % MAX_KEYLEN)
return _scrypt(secret, salt, n, r, p, keylen)
def _load_builtin_backend():
"""
Load pure-python scrypt implementation built into passlib.
"""
slowdown = 10 if PYPY else 100
warn("Using builtin scrypt backend, which is %dx slower than is required "
"for adequate security. Installing scrypt support (via 'pip install scrypt') "
"is strongly recommended" % slowdown, exc.PasslibSecurityWarning)
from ._builtin import ScryptEngine
return ScryptEngine.execute
def _load_cffi_backend():
"""
Try to import the ctypes-based scrypt hash function provided by the
``scrypt <https://pypi.python.org/pypi/scrypt/>``_ package.
"""
try:
from scrypt import hash
return hash
except ImportError:
pass
# not available, but check to see if package present but outdated / not installed right
try:
import scrypt
except ImportError as err:
if "scrypt" not in str(err):
# e.g. if cffi isn't set up right
# user should try importing scrypt explicitly to diagnose problem.
warn("'scrypt' package failed to import correctly (possible installation issue?)",
exc.PasslibWarning)
# else: package just isn't installed
else:
warn("'scrypt' package is too old (lacks ``hash()`` method)", exc.PasslibWarning)
return None
def _load_stdlib_backend():
"""
Attempt to load stdlib scrypt() implement and return wrapper.
Returns None if not found.
"""
try:
# new in python 3.6, if compiled with openssl >= 1.1
from hashlib import scrypt as stdlib_scrypt
except ImportError:
return None
def stdlib_scrypt_wrapper(secret, salt, n, r, p, keylen):
# work out appropriate "maxmem" parameter
#
# TODO: would like to enforce a single "maxmem" policy across all backends;
# and maybe expose this via scrypt hasher config.
#
# for now, since parameters should all be coming from internally-controlled sources
# (password hashes), using policy of "whatever memory the parameters needs".
# furthermore, since stdlib scrypt is only place that needs this,
# currently calculating exactly what maxmem needs to make things work for stdlib call.
# as hack, this can be overriden via SCRYPT_MAXMEM above,
# would like to formalize all of this.
maxmem = SCRYPT_MAXMEM
if maxmem < 0:
maxmem = estimate_maxmem(n, r, p)
return stdlib_scrypt(password=secret, salt=salt, n=n, r=r, p=p, dklen=keylen,
maxmem=maxmem)
return stdlib_scrypt_wrapper
#: list of potential backends
backend_values = ("stdlib", "scrypt", "builtin")
#: dict mapping backend name -> loader
_backend_loaders = dict(
stdlib=_load_stdlib_backend,
scrypt=_load_cffi_backend, # XXX: rename backend constant to "cffi"?
builtin=_load_builtin_backend,
)
def _set_backend(name, dryrun=False):
"""
set backend for scrypt(). if name not specified, loads first available.
:raises ~passlib.exc.MissingBackendError: if backend can't be found
.. note:: mainly intended to be called by unittests, and scrypt hash handler
"""
if name == "any":
return
elif name == "default":
for name in backend_values:
try:
return _set_backend(name, dryrun=dryrun)
except exc.MissingBackendError:
continue
raise exc.MissingBackendError("no scrypt backends available")
else:
loader = _backend_loaders.get(name)
if not loader:
raise ValueError("unknown scrypt backend: %r" % (name,))
hash = loader()
if not hash:
raise exc.MissingBackendError("scrypt backend %r not available" % name)
if dryrun:
return
global _scrypt, backend
backend = name
_scrypt = hash
# initialize backend
_set_backend("default")
def _has_backend(name):
try:
_set_backend(name, dryrun=True)
return True
except exc.MissingBackendError:
return False
#==========================================================================
# eof
#==========================================================================

View File

@@ -0,0 +1,244 @@
"""passlib.utils.scrypt._builtin -- scrypt() kdf in pure-python"""
#==========================================================================
# imports
#==========================================================================
# core
import operator
import struct
# pkg
from passlib.utils.compat import izip
from passlib.crypto.digest import pbkdf2_hmac
from passlib.crypto.scrypt._salsa import salsa20
# local
__all__ =[
"ScryptEngine",
]
#==========================================================================
# scrypt engine
#==========================================================================
class ScryptEngine(object):
"""
helper class used to run scrypt kdf, see scrypt() for frontend
.. warning::
this class does NO validation of the input ranges or types.
it's not intended to be used directly,
but only as a backend for :func:`passlib.utils.scrypt.scrypt()`.
"""
#=================================================================
# instance attrs
#=================================================================
# primary scrypt config parameters
n = 0
r = 0
p = 0
# derived values & objects
smix_bytes = 0
iv_bytes = 0
bmix_len = 0
bmix_half_len = 0
bmix_struct = None
integerify = None
#=================================================================
# frontend
#=================================================================
@classmethod
def execute(cls, secret, salt, n, r, p, keylen):
"""create engine & run scrypt() hash calculation"""
return cls(n, r, p).run(secret, salt, keylen)
#=================================================================
# init
#=================================================================
def __init__(self, n, r, p):
# store config
self.n = n
self.r = r
self.p = p
self.smix_bytes = r << 7 # num bytes in smix input - 2*r*16*4
self.iv_bytes = self.smix_bytes * p
self.bmix_len = bmix_len = r << 5 # length of bmix block list - 32*r integers
self.bmix_half_len = r << 4
assert struct.calcsize("I") == 4
self.bmix_struct = struct.Struct("<" + str(bmix_len) + "I")
# use optimized bmix for certain cases
if r == 1:
self.bmix = self._bmix_1
# pick best integerify function - integerify(bmix_block) should
# take last 64 bytes of block and return a little-endian integer.
# since it's immediately converted % n, we only have to extract
# the first 32 bytes if n < 2**32 - which due to the current
# internal representation, is already unpacked as a 32-bit int.
if n <= 0xFFFFffff:
integerify = operator.itemgetter(-16)
else:
assert n <= 0xFFFFffffFFFFffff
ig1 = operator.itemgetter(-16)
ig2 = operator.itemgetter(-17)
def integerify(X):
return ig1(X) | (ig2(X)<<32)
self.integerify = integerify
#=================================================================
# frontend
#=================================================================
def run(self, secret, salt, keylen):
"""
run scrypt kdf for specified secret, salt, and keylen
.. note::
* time cost is ``O(n * r * p)``
* mem cost is ``O(n * r)``
"""
# stretch salt into initial byte array via pbkdf2
iv_bytes = self.iv_bytes
input = pbkdf2_hmac("sha256", secret, salt, rounds=1, keylen=iv_bytes)
# split initial byte array into 'p' mflen-sized chunks,
# and run each chunk through smix() to generate output chunk.
smix = self.smix
if self.p == 1:
output = smix(input)
else:
# XXX: *could* use threading here, if really high p values encountered,
# but would tradeoff for more memory usage.
smix_bytes = self.smix_bytes
output = b''.join(
smix(input[offset:offset+smix_bytes])
for offset in range(0, iv_bytes, smix_bytes)
)
# stretch final byte array into output via pbkdf2
return pbkdf2_hmac("sha256", secret, output, rounds=1, keylen=keylen)
#=================================================================
# smix() helper
#=================================================================
def smix(self, input):
"""run SCrypt smix function on a single input block
:arg input:
byte string containing input data.
interpreted as 32*r little endian 4 byte integers.
:returns:
byte string containing output data
derived by mixing input using n & r parameters.
.. note:: time & mem cost are both ``O(n * r)``
"""
# gather locals
bmix = self.bmix
bmix_struct = self.bmix_struct
integerify = self.integerify
n = self.n
# parse input into 32*r integers ('X' in scrypt source)
# mem cost -- O(r)
buffer = list(bmix_struct.unpack(input))
# starting with initial buffer contents, derive V s.t.
# V[0]=initial_buffer ... V[i] = bmix(V[i-1], V[i-1]) ... V[n-1] = bmix(V[n-2], V[n-2])
# final buffer contents should equal bmix(V[n-1], V[n-1])
#
# time cost -- O(n * r) -- n loops, bmix is O(r)
# mem cost -- O(n * r) -- V is n-element array of r-element tuples
# NOTE: could do time / memory tradeoff to shrink size of V
def vgen():
i = 0
while i < n:
last = tuple(buffer)
yield last
bmix(last, buffer)
i += 1
V = list(vgen())
# generate result from X & V.
#
# time cost -- O(n * r) -- loops n times, calls bmix() which has O(r) time cost
# mem cost -- O(1) -- allocates nothing, calls bmix() which has O(1) mem cost
get_v_elem = V.__getitem__
n_mask = n - 1
i = 0
while i < n:
j = integerify(buffer) & n_mask
result = tuple(a ^ b for a, b in izip(buffer, get_v_elem(j)))
bmix(result, buffer)
i += 1
# # NOTE: we could easily support arbitrary values of ``n``, not just powers of 2,
# # but very few implementations have that ability, so not enabling it for now...
# if not n_is_log_2:
# while i < n:
# j = integerify(buffer) % n
# tmp = tuple(a^b for a,b in izip(buffer, get_v_elem(j)))
# bmix(tmp,buffer)
# i += 1
# repack tmp
return bmix_struct.pack(*buffer)
#=================================================================
# bmix() helper
#=================================================================
def bmix(self, source, target):
"""
block mixing function used by smix()
uses salsa20/8 core to mix block contents.
:arg source:
source to read from.
should be list of 32*r 4-byte integers
(2*r salsa20 blocks).
:arg target:
target to write to.
should be list with same size as source.
the existing value of this buffer is ignored.
.. warning::
this operates *in place* on target,
so source & target should NOT be same list.
.. note::
* time cost is ``O(r)`` -- loops 16*r times, salsa20() has ``O(1)`` cost.
* memory cost is ``O(1)`` -- salsa20() uses 16 x uint4,
all other operations done in-place.
"""
## assert source is not target
# Y[-1] = B[2r-1], Y[i] = hash( Y[i-1] xor B[i])
# B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
half = self.bmix_half_len # 16*r out of 32*r - start of Y_1
tmp = source[-16:] # 'X' in scrypt source
siter = iter(source)
j = 0
while j < half:
jn = j+16
target[j:jn] = tmp = salsa20(a ^ b for a, b in izip(tmp, siter))
target[half+j:half+jn] = tmp = salsa20(a ^ b for a, b in izip(tmp, siter))
j = jn
def _bmix_1(self, source, target):
"""special bmix() method optimized for ``r=1`` case"""
B = source[16:]
target[:16] = tmp = salsa20(a ^ b for a, b in izip(B, iter(source)))
target[16:] = salsa20(a ^ b for a, b in izip(tmp, B))
#=================================================================
# eoc
#=================================================================
#==========================================================================
# eof
#==========================================================================

View File

@@ -0,0 +1,154 @@
"""passlib.utils.scrypt._gen_files - meta script that generates _salsa.py"""
#==========================================================================
# imports
#==========================================================================
# core
import os
# pkg
# local
#==========================================================================
# constants
#==========================================================================
_SALSA_OPS = [
# row = (target idx, source idx 1, source idx 2, rotate)
# interpreted as salsa operation over uint32...
# target = (source1+source2)<<rotate
##/* Operate on columns. */
##define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
##x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
##x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
( 4, 0, 12, 7),
( 8, 4, 0, 9),
( 12, 8, 4, 13),
( 0, 12, 8, 18),
##x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9);
##x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18);
( 9, 5, 1, 7),
( 13, 9, 5, 9),
( 1, 13, 9, 13),
( 5, 1, 13, 18),
##x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9);
##x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18);
( 14, 10, 6, 7),
( 2, 14, 10, 9),
( 6, 2, 14, 13),
( 10, 6, 2, 18),
##x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9);
##x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18);
( 3, 15, 11, 7),
( 7, 3, 15, 9),
( 11, 7, 3, 13),
( 15, 11, 7, 18),
##/* Operate on rows. */
##x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9);
##x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18);
( 1, 0, 3, 7),
( 2, 1, 0, 9),
( 3, 2, 1, 13),
( 0, 3, 2, 18),
##x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9);
##x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18);
( 6, 5, 4, 7),
( 7, 6, 5, 9),
( 4, 7, 6, 13),
( 5, 4, 7, 18),
##x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9);
##x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18);
( 11, 10, 9, 7),
( 8, 11, 10, 9),
( 9, 8, 11, 13),
( 10, 9, 8, 18),
##x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9);
##x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18);
( 12, 15, 14, 7),
( 13, 12, 15, 9),
( 14, 13, 12, 13),
( 15, 14, 13, 18),
]
def main():
target = os.path.join(os.path.dirname(__file__), "_salsa.py")
fh = file(target, "w")
write = fh.write
VNAMES = ["v%d" % i for i in range(16)]
PAD = " " * 4
PAD2 = " " * 8
PAD3 = " " * 12
TLIST = ", ".join("b%d" % i for i in range(16))
VLIST = ", ".join(VNAMES)
kwds = dict(
VLIST=VLIST,
TLIST=TLIST,
)
write('''\
"""passlib.utils.scrypt._salsa - salsa 20/8 core, autogenerated by _gen_salsa.py"""
#=================================================================
# salsa function
#=================================================================
def salsa20(input):
\"""apply the salsa20/8 core to the provided input
:args input: input list containing 16 32-bit integers
:returns: result list containing 16 32-bit integers
\"""
%(TLIST)s = input
%(VLIST)s = \\
%(TLIST)s
i = 0
while i < 4:
''' % kwds)
for idx, (target, source1, source2, rotate) in enumerate(_SALSA_OPS):
write('''\
# salsa op %(idx)d: [%(it)d] ^= ([%(is1)d]+[%(is2)d])<<<%(rot1)d
t = (%(src1)s + %(src2)s) & 0xffffffff
%(dst)s ^= ((t & 0x%(rmask)08x) << %(rot1)d) | (t >> %(rot2)d)
''' % dict(
idx=idx, is1 = source1, is2=source2, it=target,
src1=VNAMES[source1],
src2=VNAMES[source2],
dst=VNAMES[target],
rmask=(1<<(32-rotate))-1,
rot1=rotate,
rot2=32-rotate,
))
write('''\
i += 1
''')
for idx in range(16):
write(PAD + "b%d = (b%d + v%d) & 0xffffffff\n" % (idx,idx,idx))
write('''\
return %(TLIST)s
#=================================================================
# eof
#=================================================================
''' % kwds)
if __name__ == "__main__":
main()
#==========================================================================
# eof
#==========================================================================

View File

@@ -0,0 +1,170 @@
"""passlib.utils.scrypt._salsa - salsa 20/8 core, autogenerated by _gen_salsa.py"""
#=================================================================
# salsa function
#=================================================================
def salsa20(input):
"""apply the salsa20/8 core to the provided input
:args input: input list containing 16 32-bit integers
:returns: result list containing 16 32-bit integers
"""
b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15 = input
v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15 = \
b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15
i = 0
while i < 4:
# salsa op 0: [4] ^= ([0]+[12])<<<7
t = (v0 + v12) & 0xffffffff
v4 ^= ((t & 0x01ffffff) << 7) | (t >> 25)
# salsa op 1: [8] ^= ([4]+[0])<<<9
t = (v4 + v0) & 0xffffffff
v8 ^= ((t & 0x007fffff) << 9) | (t >> 23)
# salsa op 2: [12] ^= ([8]+[4])<<<13
t = (v8 + v4) & 0xffffffff
v12 ^= ((t & 0x0007ffff) << 13) | (t >> 19)
# salsa op 3: [0] ^= ([12]+[8])<<<18
t = (v12 + v8) & 0xffffffff
v0 ^= ((t & 0x00003fff) << 18) | (t >> 14)
# salsa op 4: [9] ^= ([5]+[1])<<<7
t = (v5 + v1) & 0xffffffff
v9 ^= ((t & 0x01ffffff) << 7) | (t >> 25)
# salsa op 5: [13] ^= ([9]+[5])<<<9
t = (v9 + v5) & 0xffffffff
v13 ^= ((t & 0x007fffff) << 9) | (t >> 23)
# salsa op 6: [1] ^= ([13]+[9])<<<13
t = (v13 + v9) & 0xffffffff
v1 ^= ((t & 0x0007ffff) << 13) | (t >> 19)
# salsa op 7: [5] ^= ([1]+[13])<<<18
t = (v1 + v13) & 0xffffffff
v5 ^= ((t & 0x00003fff) << 18) | (t >> 14)
# salsa op 8: [14] ^= ([10]+[6])<<<7
t = (v10 + v6) & 0xffffffff
v14 ^= ((t & 0x01ffffff) << 7) | (t >> 25)
# salsa op 9: [2] ^= ([14]+[10])<<<9
t = (v14 + v10) & 0xffffffff
v2 ^= ((t & 0x007fffff) << 9) | (t >> 23)
# salsa op 10: [6] ^= ([2]+[14])<<<13
t = (v2 + v14) & 0xffffffff
v6 ^= ((t & 0x0007ffff) << 13) | (t >> 19)
# salsa op 11: [10] ^= ([6]+[2])<<<18
t = (v6 + v2) & 0xffffffff
v10 ^= ((t & 0x00003fff) << 18) | (t >> 14)
# salsa op 12: [3] ^= ([15]+[11])<<<7
t = (v15 + v11) & 0xffffffff
v3 ^= ((t & 0x01ffffff) << 7) | (t >> 25)
# salsa op 13: [7] ^= ([3]+[15])<<<9
t = (v3 + v15) & 0xffffffff
v7 ^= ((t & 0x007fffff) << 9) | (t >> 23)
# salsa op 14: [11] ^= ([7]+[3])<<<13
t = (v7 + v3) & 0xffffffff
v11 ^= ((t & 0x0007ffff) << 13) | (t >> 19)
# salsa op 15: [15] ^= ([11]+[7])<<<18
t = (v11 + v7) & 0xffffffff
v15 ^= ((t & 0x00003fff) << 18) | (t >> 14)
# salsa op 16: [1] ^= ([0]+[3])<<<7
t = (v0 + v3) & 0xffffffff
v1 ^= ((t & 0x01ffffff) << 7) | (t >> 25)
# salsa op 17: [2] ^= ([1]+[0])<<<9
t = (v1 + v0) & 0xffffffff
v2 ^= ((t & 0x007fffff) << 9) | (t >> 23)
# salsa op 18: [3] ^= ([2]+[1])<<<13
t = (v2 + v1) & 0xffffffff
v3 ^= ((t & 0x0007ffff) << 13) | (t >> 19)
# salsa op 19: [0] ^= ([3]+[2])<<<18
t = (v3 + v2) & 0xffffffff
v0 ^= ((t & 0x00003fff) << 18) | (t >> 14)
# salsa op 20: [6] ^= ([5]+[4])<<<7
t = (v5 + v4) & 0xffffffff
v6 ^= ((t & 0x01ffffff) << 7) | (t >> 25)
# salsa op 21: [7] ^= ([6]+[5])<<<9
t = (v6 + v5) & 0xffffffff
v7 ^= ((t & 0x007fffff) << 9) | (t >> 23)
# salsa op 22: [4] ^= ([7]+[6])<<<13
t = (v7 + v6) & 0xffffffff
v4 ^= ((t & 0x0007ffff) << 13) | (t >> 19)
# salsa op 23: [5] ^= ([4]+[7])<<<18
t = (v4 + v7) & 0xffffffff
v5 ^= ((t & 0x00003fff) << 18) | (t >> 14)
# salsa op 24: [11] ^= ([10]+[9])<<<7
t = (v10 + v9) & 0xffffffff
v11 ^= ((t & 0x01ffffff) << 7) | (t >> 25)
# salsa op 25: [8] ^= ([11]+[10])<<<9
t = (v11 + v10) & 0xffffffff
v8 ^= ((t & 0x007fffff) << 9) | (t >> 23)
# salsa op 26: [9] ^= ([8]+[11])<<<13
t = (v8 + v11) & 0xffffffff
v9 ^= ((t & 0x0007ffff) << 13) | (t >> 19)
# salsa op 27: [10] ^= ([9]+[8])<<<18
t = (v9 + v8) & 0xffffffff
v10 ^= ((t & 0x00003fff) << 18) | (t >> 14)
# salsa op 28: [12] ^= ([15]+[14])<<<7
t = (v15 + v14) & 0xffffffff
v12 ^= ((t & 0x01ffffff) << 7) | (t >> 25)
# salsa op 29: [13] ^= ([12]+[15])<<<9
t = (v12 + v15) & 0xffffffff
v13 ^= ((t & 0x007fffff) << 9) | (t >> 23)
# salsa op 30: [14] ^= ([13]+[12])<<<13
t = (v13 + v12) & 0xffffffff
v14 ^= ((t & 0x0007ffff) << 13) | (t >> 19)
# salsa op 31: [15] ^= ([14]+[13])<<<18
t = (v14 + v13) & 0xffffffff
v15 ^= ((t & 0x00003fff) << 18) | (t >> 14)
i += 1
b0 = (b0 + v0) & 0xffffffff
b1 = (b1 + v1) & 0xffffffff
b2 = (b2 + v2) & 0xffffffff
b3 = (b3 + v3) & 0xffffffff
b4 = (b4 + v4) & 0xffffffff
b5 = (b5 + v5) & 0xffffffff
b6 = (b6 + v6) & 0xffffffff
b7 = (b7 + v7) & 0xffffffff
b8 = (b8 + v8) & 0xffffffff
b9 = (b9 + v9) & 0xffffffff
b10 = (b10 + v10) & 0xffffffff
b11 = (b11 + v11) & 0xffffffff
b12 = (b12 + v12) & 0xffffffff
b13 = (b13 + v13) & 0xffffffff
b14 = (b14 + v14) & 0xffffffff
b15 = (b15 + v15) & 0xffffffff
return b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15
#=================================================================
# eof
#=================================================================