mirror of
https://gitlab.com/MoonTestUse1/AdministrationItDepartmens.git
synced 2025-08-14 00:25:46 +02:00
Initial commit
This commit is contained in:
835
venv/Lib/site-packages/ecdsa/numbertheory.py
Normal file
835
venv/Lib/site-packages/ecdsa/numbertheory.py
Normal file
@@ -0,0 +1,835 @@
|
||||
#! /usr/bin/env python
|
||||
#
|
||||
# Provide some simple capabilities from number theory.
|
||||
#
|
||||
# Version of 2008.11.14.
|
||||
#
|
||||
# Written in 2005 and 2006 by Peter Pearson and placed in the public domain.
|
||||
# Revision history:
|
||||
# 2008.11.14: Use pow(base, exponent, modulus) for modular_exp.
|
||||
# Make gcd and lcm accept arbitrarily many arguments.
|
||||
|
||||
from __future__ import division
|
||||
|
||||
import sys
|
||||
from six import integer_types, PY2
|
||||
from six.moves import reduce
|
||||
|
||||
try:
|
||||
xrange
|
||||
except NameError:
|
||||
xrange = range
|
||||
try:
|
||||
from gmpy2 import powmod, mpz
|
||||
|
||||
GMPY2 = True
|
||||
GMPY = False
|
||||
except ImportError: # pragma: no branch
|
||||
GMPY2 = False
|
||||
try:
|
||||
from gmpy import mpz
|
||||
|
||||
GMPY = True
|
||||
except ImportError:
|
||||
GMPY = False
|
||||
|
||||
|
||||
if GMPY2 or GMPY: # pragma: no branch
|
||||
integer_types = tuple(integer_types + (type(mpz(1)),))
|
||||
|
||||
|
||||
import math
|
||||
import warnings
|
||||
import random
|
||||
from .util import bit_length
|
||||
|
||||
|
||||
class Error(Exception):
|
||||
"""Base class for exceptions in this module."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class JacobiError(Error):
|
||||
pass
|
||||
|
||||
|
||||
class SquareRootError(Error):
|
||||
pass
|
||||
|
||||
|
||||
class NegativeExponentError(Error):
|
||||
pass
|
||||
|
||||
|
||||
def modular_exp(base, exponent, modulus): # pragma: no cover
|
||||
"""Raise base to exponent, reducing by modulus"""
|
||||
# deprecated in 0.14
|
||||
warnings.warn(
|
||||
"Function is unused in library code. If you use this code, "
|
||||
"change to pow() builtin.",
|
||||
DeprecationWarning,
|
||||
)
|
||||
if exponent < 0:
|
||||
raise NegativeExponentError(
|
||||
"Negative exponents (%d) not allowed" % exponent
|
||||
)
|
||||
return pow(base, exponent, modulus)
|
||||
|
||||
|
||||
def polynomial_reduce_mod(poly, polymod, p):
|
||||
"""Reduce poly by polymod, integer arithmetic modulo p.
|
||||
|
||||
Polynomials are represented as lists of coefficients
|
||||
of increasing powers of x."""
|
||||
|
||||
# This module has been tested only by extensive use
|
||||
# in calculating modular square roots.
|
||||
|
||||
# Just to make this easy, require a monic polynomial:
|
||||
assert polymod[-1] == 1
|
||||
|
||||
assert len(polymod) > 1
|
||||
|
||||
while len(poly) >= len(polymod):
|
||||
if poly[-1] != 0:
|
||||
for i in xrange(2, len(polymod) + 1):
|
||||
poly[-i] = (poly[-i] - poly[-1] * polymod[-i]) % p
|
||||
poly = poly[0:-1]
|
||||
|
||||
return poly
|
||||
|
||||
|
||||
def polynomial_multiply_mod(m1, m2, polymod, p):
|
||||
"""Polynomial multiplication modulo a polynomial over ints mod p.
|
||||
|
||||
Polynomials are represented as lists of coefficients
|
||||
of increasing powers of x."""
|
||||
|
||||
# This is just a seat-of-the-pants implementation.
|
||||
|
||||
# This module has been tested only by extensive use
|
||||
# in calculating modular square roots.
|
||||
|
||||
# Initialize the product to zero:
|
||||
|
||||
prod = (len(m1) + len(m2) - 1) * [0]
|
||||
|
||||
# Add together all the cross-terms:
|
||||
|
||||
for i in xrange(len(m1)):
|
||||
for j in xrange(len(m2)):
|
||||
prod[i + j] = (prod[i + j] + m1[i] * m2[j]) % p
|
||||
|
||||
return polynomial_reduce_mod(prod, polymod, p)
|
||||
|
||||
|
||||
def polynomial_exp_mod(base, exponent, polymod, p):
|
||||
"""Polynomial exponentiation modulo a polynomial over ints mod p.
|
||||
|
||||
Polynomials are represented as lists of coefficients
|
||||
of increasing powers of x."""
|
||||
|
||||
# Based on the Handbook of Applied Cryptography, algorithm 2.227.
|
||||
|
||||
# This module has been tested only by extensive use
|
||||
# in calculating modular square roots.
|
||||
|
||||
assert exponent < p
|
||||
|
||||
if exponent == 0:
|
||||
return [1]
|
||||
|
||||
G = base
|
||||
k = exponent
|
||||
if k % 2 == 1:
|
||||
s = G
|
||||
else:
|
||||
s = [1]
|
||||
|
||||
while k > 1:
|
||||
k = k // 2
|
||||
G = polynomial_multiply_mod(G, G, polymod, p)
|
||||
if k % 2 == 1:
|
||||
s = polynomial_multiply_mod(G, s, polymod, p)
|
||||
|
||||
return s
|
||||
|
||||
|
||||
def jacobi(a, n):
|
||||
"""Jacobi symbol"""
|
||||
|
||||
# Based on the Handbook of Applied Cryptography (HAC), algorithm 2.149.
|
||||
|
||||
# This function has been tested by comparison with a small
|
||||
# table printed in HAC, and by extensive use in calculating
|
||||
# modular square roots.
|
||||
|
||||
if not n >= 3:
|
||||
raise JacobiError("n must be larger than 2")
|
||||
if not n % 2 == 1:
|
||||
raise JacobiError("n must be odd")
|
||||
a = a % n
|
||||
if a == 0:
|
||||
return 0
|
||||
if a == 1:
|
||||
return 1
|
||||
a1, e = a, 0
|
||||
while a1 % 2 == 0:
|
||||
a1, e = a1 // 2, e + 1
|
||||
if e % 2 == 0 or n % 8 == 1 or n % 8 == 7:
|
||||
s = 1
|
||||
else:
|
||||
s = -1
|
||||
if a1 == 1:
|
||||
return s
|
||||
if n % 4 == 3 and a1 % 4 == 3:
|
||||
s = -s
|
||||
return s * jacobi(n % a1, a1)
|
||||
|
||||
|
||||
def square_root_mod_prime(a, p):
|
||||
"""Modular square root of a, mod p, p prime."""
|
||||
|
||||
# Based on the Handbook of Applied Cryptography, algorithms 3.34 to 3.39.
|
||||
|
||||
# This module has been tested for all values in [0,p-1] for
|
||||
# every prime p from 3 to 1229.
|
||||
|
||||
assert 0 <= a < p
|
||||
assert 1 < p
|
||||
|
||||
if a == 0:
|
||||
return 0
|
||||
if p == 2:
|
||||
return a
|
||||
|
||||
jac = jacobi(a, p)
|
||||
if jac == -1:
|
||||
raise SquareRootError("%d has no square root modulo %d" % (a, p))
|
||||
|
||||
if p % 4 == 3:
|
||||
return pow(a, (p + 1) // 4, p)
|
||||
|
||||
if p % 8 == 5:
|
||||
d = pow(a, (p - 1) // 4, p)
|
||||
if d == 1:
|
||||
return pow(a, (p + 3) // 8, p)
|
||||
assert d == p - 1
|
||||
return (2 * a * pow(4 * a, (p - 5) // 8, p)) % p
|
||||
|
||||
if PY2:
|
||||
# xrange on python2 can take integers representable as C long only
|
||||
range_top = min(0x7FFFFFFF, p)
|
||||
else:
|
||||
range_top = p
|
||||
for b in xrange(2, range_top): # pragma: no branch
|
||||
if jacobi(b * b - 4 * a, p) == -1:
|
||||
f = (a, -b, 1)
|
||||
ff = polynomial_exp_mod((0, 1), (p + 1) // 2, f, p)
|
||||
if ff[1]:
|
||||
raise SquareRootError("p is not prime")
|
||||
return ff[0]
|
||||
# just an assertion
|
||||
raise RuntimeError("No b found.") # pragma: no cover
|
||||
|
||||
|
||||
# because all the inverse_mod code is arch/environment specific, and coveralls
|
||||
# expects it to execute equal number of times, we need to waive it by
|
||||
# adding the "no branch" pragma to all branches
|
||||
if GMPY2: # pragma: no branch
|
||||
|
||||
def inverse_mod(a, m):
|
||||
"""Inverse of a mod m."""
|
||||
if a == 0: # pragma: no branch
|
||||
return 0
|
||||
return powmod(a, -1, m)
|
||||
|
||||
elif GMPY: # pragma: no branch
|
||||
|
||||
def inverse_mod(a, m):
|
||||
"""Inverse of a mod m."""
|
||||
# while libgmp does support inverses modulo, it is accessible
|
||||
# only using the native `pow()` function, and `pow()` in gmpy sanity
|
||||
# checks the parameters before passing them on to underlying
|
||||
# implementation
|
||||
if a == 0: # pragma: no branch
|
||||
return 0
|
||||
a = mpz(a)
|
||||
m = mpz(m)
|
||||
|
||||
lm, hm = mpz(1), mpz(0)
|
||||
low, high = a % m, m
|
||||
while low > 1: # pragma: no branch
|
||||
r = high // low
|
||||
lm, low, hm, high = hm - lm * r, high - low * r, lm, low
|
||||
|
||||
return lm % m
|
||||
|
||||
elif sys.version_info >= (3, 8): # pragma: no branch
|
||||
|
||||
def inverse_mod(a, m):
|
||||
"""Inverse of a mod m."""
|
||||
if a == 0: # pragma: no branch
|
||||
return 0
|
||||
return pow(a, -1, m)
|
||||
|
||||
else: # pragma: no branch
|
||||
|
||||
def inverse_mod(a, m):
|
||||
"""Inverse of a mod m."""
|
||||
|
||||
if a == 0: # pragma: no branch
|
||||
return 0
|
||||
|
||||
lm, hm = 1, 0
|
||||
low, high = a % m, m
|
||||
while low > 1: # pragma: no branch
|
||||
r = high // low
|
||||
lm, low, hm, high = hm - lm * r, high - low * r, lm, low
|
||||
|
||||
return lm % m
|
||||
|
||||
|
||||
try:
|
||||
gcd2 = math.gcd
|
||||
except AttributeError:
|
||||
|
||||
def gcd2(a, b):
|
||||
"""Greatest common divisor using Euclid's algorithm."""
|
||||
while a:
|
||||
a, b = b % a, a
|
||||
return b
|
||||
|
||||
|
||||
def gcd(*a):
|
||||
"""Greatest common divisor.
|
||||
|
||||
Usage: gcd([ 2, 4, 6 ])
|
||||
or: gcd(2, 4, 6)
|
||||
"""
|
||||
|
||||
if len(a) > 1:
|
||||
return reduce(gcd2, a)
|
||||
if hasattr(a[0], "__iter__"):
|
||||
return reduce(gcd2, a[0])
|
||||
return a[0]
|
||||
|
||||
|
||||
def lcm2(a, b):
|
||||
"""Least common multiple of two integers."""
|
||||
|
||||
return (a * b) // gcd(a, b)
|
||||
|
||||
|
||||
def lcm(*a):
|
||||
"""Least common multiple.
|
||||
|
||||
Usage: lcm([ 3, 4, 5 ])
|
||||
or: lcm(3, 4, 5)
|
||||
"""
|
||||
|
||||
if len(a) > 1:
|
||||
return reduce(lcm2, a)
|
||||
if hasattr(a[0], "__iter__"):
|
||||
return reduce(lcm2, a[0])
|
||||
return a[0]
|
||||
|
||||
|
||||
def factorization(n):
|
||||
"""Decompose n into a list of (prime,exponent) pairs."""
|
||||
|
||||
assert isinstance(n, integer_types)
|
||||
|
||||
if n < 2:
|
||||
return []
|
||||
|
||||
result = []
|
||||
|
||||
# Test the small primes:
|
||||
|
||||
for d in smallprimes:
|
||||
if d > n:
|
||||
break
|
||||
q, r = divmod(n, d)
|
||||
if r == 0:
|
||||
count = 1
|
||||
while d <= n: # pragma: no branch
|
||||
n = q
|
||||
q, r = divmod(n, d)
|
||||
if r != 0:
|
||||
break
|
||||
count = count + 1
|
||||
result.append((d, count))
|
||||
|
||||
# If n is still greater than the last of our small primes,
|
||||
# it may require further work:
|
||||
|
||||
if n > smallprimes[-1]:
|
||||
if is_prime(n): # If what's left is prime, it's easy:
|
||||
result.append((n, 1))
|
||||
else: # Ugh. Search stupidly for a divisor:
|
||||
d = smallprimes[-1]
|
||||
while 1:
|
||||
d = d + 2 # Try the next divisor.
|
||||
q, r = divmod(n, d)
|
||||
if q < d: # n < d*d means we're done, n = 1 or prime.
|
||||
break
|
||||
if r == 0: # d divides n. How many times?
|
||||
count = 1
|
||||
n = q
|
||||
# As long as d might still divide n,
|
||||
while d <= n: # pragma: no branch
|
||||
q, r = divmod(n, d) # see if it does.
|
||||
if r != 0:
|
||||
break
|
||||
n = q # It does. Reduce n, increase count.
|
||||
count = count + 1
|
||||
result.append((d, count))
|
||||
if n > 1:
|
||||
result.append((n, 1))
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def phi(n): # pragma: no cover
|
||||
"""Return the Euler totient function of n."""
|
||||
# deprecated in 0.14
|
||||
warnings.warn(
|
||||
"Function is unused by library code. If you use this code, "
|
||||
"please open an issue in "
|
||||
"https://github.com/tlsfuzzer/python-ecdsa",
|
||||
DeprecationWarning,
|
||||
)
|
||||
|
||||
assert isinstance(n, integer_types)
|
||||
|
||||
if n < 3:
|
||||
return 1
|
||||
|
||||
result = 1
|
||||
ff = factorization(n)
|
||||
for f in ff:
|
||||
e = f[1]
|
||||
if e > 1:
|
||||
result = result * f[0] ** (e - 1) * (f[0] - 1)
|
||||
else:
|
||||
result = result * (f[0] - 1)
|
||||
return result
|
||||
|
||||
|
||||
def carmichael(n): # pragma: no cover
|
||||
"""Return Carmichael function of n.
|
||||
|
||||
Carmichael(n) is the smallest integer x such that
|
||||
m**x = 1 mod n for all m relatively prime to n.
|
||||
"""
|
||||
# deprecated in 0.14
|
||||
warnings.warn(
|
||||
"Function is unused by library code. If you use this code, "
|
||||
"please open an issue in "
|
||||
"https://github.com/tlsfuzzer/python-ecdsa",
|
||||
DeprecationWarning,
|
||||
)
|
||||
|
||||
return carmichael_of_factorized(factorization(n))
|
||||
|
||||
|
||||
def carmichael_of_factorized(f_list): # pragma: no cover
|
||||
"""Return the Carmichael function of a number that is
|
||||
represented as a list of (prime,exponent) pairs.
|
||||
"""
|
||||
# deprecated in 0.14
|
||||
warnings.warn(
|
||||
"Function is unused by library code. If you use this code, "
|
||||
"please open an issue in "
|
||||
"https://github.com/tlsfuzzer/python-ecdsa",
|
||||
DeprecationWarning,
|
||||
)
|
||||
|
||||
if len(f_list) < 1:
|
||||
return 1
|
||||
|
||||
result = carmichael_of_ppower(f_list[0])
|
||||
for i in xrange(1, len(f_list)):
|
||||
result = lcm(result, carmichael_of_ppower(f_list[i]))
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def carmichael_of_ppower(pp): # pragma: no cover
|
||||
"""Carmichael function of the given power of the given prime."""
|
||||
# deprecated in 0.14
|
||||
warnings.warn(
|
||||
"Function is unused by library code. If you use this code, "
|
||||
"please open an issue in "
|
||||
"https://github.com/tlsfuzzer/python-ecdsa",
|
||||
DeprecationWarning,
|
||||
)
|
||||
|
||||
p, a = pp
|
||||
if p == 2 and a > 2:
|
||||
return 2 ** (a - 2)
|
||||
else:
|
||||
return (p - 1) * p ** (a - 1)
|
||||
|
||||
|
||||
def order_mod(x, m): # pragma: no cover
|
||||
"""Return the order of x in the multiplicative group mod m."""
|
||||
# deprecated in 0.14
|
||||
warnings.warn(
|
||||
"Function is unused by library code. If you use this code, "
|
||||
"please open an issue in "
|
||||
"https://github.com/tlsfuzzer/python-ecdsa",
|
||||
DeprecationWarning,
|
||||
)
|
||||
|
||||
# Warning: this implementation is not very clever, and will
|
||||
# take a long time if m is very large.
|
||||
|
||||
if m <= 1:
|
||||
return 0
|
||||
|
||||
assert gcd(x, m) == 1
|
||||
|
||||
z = x
|
||||
result = 1
|
||||
while z != 1:
|
||||
z = (z * x) % m
|
||||
result = result + 1
|
||||
return result
|
||||
|
||||
|
||||
def largest_factor_relatively_prime(a, b): # pragma: no cover
|
||||
"""Return the largest factor of a relatively prime to b."""
|
||||
# deprecated in 0.14
|
||||
warnings.warn(
|
||||
"Function is unused by library code. If you use this code, "
|
||||
"please open an issue in "
|
||||
"https://github.com/tlsfuzzer/python-ecdsa",
|
||||
DeprecationWarning,
|
||||
)
|
||||
|
||||
while 1:
|
||||
d = gcd(a, b)
|
||||
if d <= 1:
|
||||
break
|
||||
b = d
|
||||
while 1:
|
||||
q, r = divmod(a, d)
|
||||
if r > 0:
|
||||
break
|
||||
a = q
|
||||
return a
|
||||
|
||||
|
||||
def kinda_order_mod(x, m): # pragma: no cover
|
||||
"""Return the order of x in the multiplicative group mod m',
|
||||
where m' is the largest factor of m relatively prime to x.
|
||||
"""
|
||||
# deprecated in 0.14
|
||||
warnings.warn(
|
||||
"Function is unused by library code. If you use this code, "
|
||||
"please open an issue in "
|
||||
"https://github.com/tlsfuzzer/python-ecdsa",
|
||||
DeprecationWarning,
|
||||
)
|
||||
|
||||
return order_mod(x, largest_factor_relatively_prime(m, x))
|
||||
|
||||
|
||||
def is_prime(n):
|
||||
"""Return True if x is prime, False otherwise.
|
||||
|
||||
We use the Miller-Rabin test, as given in Menezes et al. p. 138.
|
||||
This test is not exact: there are composite values n for which
|
||||
it returns True.
|
||||
|
||||
In testing the odd numbers from 10000001 to 19999999,
|
||||
about 66 composites got past the first test,
|
||||
5 got past the second test, and none got past the third.
|
||||
Since factors of 2, 3, 5, 7, and 11 were detected during
|
||||
preliminary screening, the number of numbers tested by
|
||||
Miller-Rabin was (19999999 - 10000001)*(2/3)*(4/5)*(6/7)
|
||||
= 4.57 million.
|
||||
"""
|
||||
|
||||
# (This is used to study the risk of false positives:)
|
||||
global miller_rabin_test_count
|
||||
|
||||
miller_rabin_test_count = 0
|
||||
|
||||
if n <= smallprimes[-1]:
|
||||
if n in smallprimes:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
# 2310 = 2 * 3 * 5 * 7 * 11
|
||||
if gcd(n, 2310) != 1:
|
||||
return False
|
||||
|
||||
# Choose a number of iterations sufficient to reduce the
|
||||
# probability of accepting a composite below 2**-80
|
||||
# (from Menezes et al. Table 4.4):
|
||||
|
||||
t = 40
|
||||
n_bits = 1 + bit_length(n)
|
||||
assert 11 <= n_bits <= 16384
|
||||
for k, tt in (
|
||||
(100, 27),
|
||||
(150, 18),
|
||||
(200, 15),
|
||||
(250, 12),
|
||||
(300, 9),
|
||||
(350, 8),
|
||||
(400, 7),
|
||||
(450, 6),
|
||||
(550, 5),
|
||||
(650, 4),
|
||||
(850, 3),
|
||||
(1300, 2),
|
||||
):
|
||||
if n_bits < k:
|
||||
break
|
||||
t = tt
|
||||
|
||||
# Run the test t times:
|
||||
|
||||
s = 0
|
||||
r = n - 1
|
||||
while (r % 2) == 0:
|
||||
s = s + 1
|
||||
r = r // 2
|
||||
for i in xrange(t):
|
||||
a = random.choice(smallprimes)
|
||||
y = pow(a, r, n)
|
||||
if y != 1 and y != n - 1:
|
||||
j = 1
|
||||
while j <= s - 1 and y != n - 1:
|
||||
y = pow(y, 2, n)
|
||||
if y == 1:
|
||||
miller_rabin_test_count = i + 1
|
||||
return False
|
||||
j = j + 1
|
||||
if y != n - 1:
|
||||
miller_rabin_test_count = i + 1
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def next_prime(starting_value):
|
||||
"""Return the smallest prime larger than the starting value."""
|
||||
|
||||
if starting_value < 2:
|
||||
return 2
|
||||
result = (starting_value + 1) | 1
|
||||
while not is_prime(result):
|
||||
result = result + 2
|
||||
return result
|
||||
|
||||
|
||||
smallprimes = [
|
||||
2,
|
||||
3,
|
||||
5,
|
||||
7,
|
||||
11,
|
||||
13,
|
||||
17,
|
||||
19,
|
||||
23,
|
||||
29,
|
||||
31,
|
||||
37,
|
||||
41,
|
||||
43,
|
||||
47,
|
||||
53,
|
||||
59,
|
||||
61,
|
||||
67,
|
||||
71,
|
||||
73,
|
||||
79,
|
||||
83,
|
||||
89,
|
||||
97,
|
||||
101,
|
||||
103,
|
||||
107,
|
||||
109,
|
||||
113,
|
||||
127,
|
||||
131,
|
||||
137,
|
||||
139,
|
||||
149,
|
||||
151,
|
||||
157,
|
||||
163,
|
||||
167,
|
||||
173,
|
||||
179,
|
||||
181,
|
||||
191,
|
||||
193,
|
||||
197,
|
||||
199,
|
||||
211,
|
||||
223,
|
||||
227,
|
||||
229,
|
||||
233,
|
||||
239,
|
||||
241,
|
||||
251,
|
||||
257,
|
||||
263,
|
||||
269,
|
||||
271,
|
||||
277,
|
||||
281,
|
||||
283,
|
||||
293,
|
||||
307,
|
||||
311,
|
||||
313,
|
||||
317,
|
||||
331,
|
||||
337,
|
||||
347,
|
||||
349,
|
||||
353,
|
||||
359,
|
||||
367,
|
||||
373,
|
||||
379,
|
||||
383,
|
||||
389,
|
||||
397,
|
||||
401,
|
||||
409,
|
||||
419,
|
||||
421,
|
||||
431,
|
||||
433,
|
||||
439,
|
||||
443,
|
||||
449,
|
||||
457,
|
||||
461,
|
||||
463,
|
||||
467,
|
||||
479,
|
||||
487,
|
||||
491,
|
||||
499,
|
||||
503,
|
||||
509,
|
||||
521,
|
||||
523,
|
||||
541,
|
||||
547,
|
||||
557,
|
||||
563,
|
||||
569,
|
||||
571,
|
||||
577,
|
||||
587,
|
||||
593,
|
||||
599,
|
||||
601,
|
||||
607,
|
||||
613,
|
||||
617,
|
||||
619,
|
||||
631,
|
||||
641,
|
||||
643,
|
||||
647,
|
||||
653,
|
||||
659,
|
||||
661,
|
||||
673,
|
||||
677,
|
||||
683,
|
||||
691,
|
||||
701,
|
||||
709,
|
||||
719,
|
||||
727,
|
||||
733,
|
||||
739,
|
||||
743,
|
||||
751,
|
||||
757,
|
||||
761,
|
||||
769,
|
||||
773,
|
||||
787,
|
||||
797,
|
||||
809,
|
||||
811,
|
||||
821,
|
||||
823,
|
||||
827,
|
||||
829,
|
||||
839,
|
||||
853,
|
||||
857,
|
||||
859,
|
||||
863,
|
||||
877,
|
||||
881,
|
||||
883,
|
||||
887,
|
||||
907,
|
||||
911,
|
||||
919,
|
||||
929,
|
||||
937,
|
||||
941,
|
||||
947,
|
||||
953,
|
||||
967,
|
||||
971,
|
||||
977,
|
||||
983,
|
||||
991,
|
||||
997,
|
||||
1009,
|
||||
1013,
|
||||
1019,
|
||||
1021,
|
||||
1031,
|
||||
1033,
|
||||
1039,
|
||||
1049,
|
||||
1051,
|
||||
1061,
|
||||
1063,
|
||||
1069,
|
||||
1087,
|
||||
1091,
|
||||
1093,
|
||||
1097,
|
||||
1103,
|
||||
1109,
|
||||
1117,
|
||||
1123,
|
||||
1129,
|
||||
1151,
|
||||
1153,
|
||||
1163,
|
||||
1171,
|
||||
1181,
|
||||
1187,
|
||||
1193,
|
||||
1201,
|
||||
1213,
|
||||
1217,
|
||||
1223,
|
||||
1229,
|
||||
]
|
||||
|
||||
miller_rabin_test_count = 0
|
Reference in New Issue
Block a user